会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 71. 发明申请
    • Index Structure for Supporting Structural XML Queries
    • 支持结构XML查询的索引结构
    • US20070271243A1
    • 2007-11-22
    • US11780095
    • 2007-07-19
    • Wei FanHaixun WangPhilip Yu
    • Wei FanHaixun WangPhilip Yu
    • G06F17/30
    • G06F17/30911Y10S707/99933Y10S707/99943
    • The present invention provides a ViST (or “virtual suffix tree”), which is a novel index structure for searching XML documents. By representing both XML documents and XML queries in structure-encoded sequences, it is shown that querying XML data is equivalent to finding (non-contiguous) subsequence matches. A variety of XML queries, including those with branches, or wild-cards (‘*’ and ‘//’), can be expressed by structure-encoded sequences. Unlike index methods that disassemble a query into multiple sub-queries, and then join the results of these sub-queries to provide the final answers, ViST uses tree structures as the basic unit of query to avoid expensive join operations. Furthermore, ViST provides a unified index on both content and structure of the XML documents, hence it has a performance advantage over methods indexing either just content or structure. ViST supports dynamic index update, and it relies solely on B+Trees without using any specialized data structures that are not well supported by common database management systems (hereinafter referred to as “DBMSs”).
    • 本发明提供了一种ViST(或“虚拟后缀树”),其是用于搜索XML文档的新型索引结构。 通过在结构编码序列中同时表示XML文档和XML查询,显示查询XML数据等同于查找(非连续)子序列匹配。 各种XML查询(包括具有分支的查询)或通配符('*'和'//')可以由结构编码的序列表示。 不同于将查询反汇编成多个子查询的索引方法,然后加入这些子查询的结果以提供最终答案,ViST使用树结构作为查询的基本单位,以避免昂贵的连接操作。 此外,ViST为XML文档的内容和结构提供了一个统一的索引,因此与仅通过内容或结构索引方法相比,它具有性能优势。 ViST支持动态索引更新,它仅仅依赖于B< +>树,而不使用通用数据库管理系统(以下简称“DBMS”)不能很好支持的任何专门的数据结构。
    • 74. 发明申请
    • System and method for sequencing XML documents for tree structure indexing
    • 用于对树结构索引的XML文档进行排序的系统和方法
    • US20060161575A1
    • 2006-07-20
    • US11035889
    • 2005-01-14
    • Wei FanHaixun WangPhilip Yu
    • Wei FanHaixun WangPhilip Yu
    • G06F7/00
    • G06F17/30935Y10S707/99933Y10S707/99936
    • Sequence-based XML indexing aims at avoiding expensive join operations in query processing. It transforms structured XML data into sequences so that a structured query can be answered holistically through subsequence matching. Herein, there is addresed the problem of query equivalence with respect to this transformation, and thereis introduced a performance-oriented principle for sequencing tree structures. With query equivalence, XML queries can be performed through subsequence matching without join operations, post-processing, or other special handling for problems such as false alarms. There is identified a class of sequencing methods for this purpose, and there is presented a novel subsequence matching algorithm that observe query equivalence. Also introduced is a performance-oriented principle to guide the sequencing of tree structures. For any given XML dataset, the principle finds an optimal sequencing strategy according to its schema and its data distribution; there is thus presented herein a novel method that realizes this principle.
    • 基于序列的XML索引旨在避免查询处理中的昂贵的联接操作。 它将结构化XML数据转换为序列,以便可以通过子序列匹配整体回答结构化查询。 这里提出了相对于这种转换的查询等价性的问题,并且引入了用于排序树结构的性能导向原理。 通过查询等价,可以通过子序列匹配执行XML查询,无需连接操作,后处理或其他特殊处理,例如虚假警报等问题。 确定了一类用于此目的的测序方法,并提出了一种观察查询等价性的新颖的子序列匹配算法。 还引入了一种以性能为导向的原则来指导树结构的排序。 对于任何给定的XML数据集,该原理根据其模式及其数据分布找到最佳排序策略; 因此在此呈现了实现这一原理的新颖方法。
    • 75. 发明申请
    • Cross-feature analysis
    • 跨特征分析
    • US20050283511A1
    • 2005-12-22
    • US10658623
    • 2003-09-09
    • Wei FanPhilip Yu
    • Wei FanPhilip Yu
    • G06F7/38G06F15/173
    • G06F11/008
    • Disclosed is a method of automatically identifying anomalous situations during computerized system operations that records actions performed by the computerized system as features in a history file, automatically creates a model for each feature only from normal data in the history file, performs training by calculating anomaly scores of the features, establishes a threshold to evaluate whether features are abnormal, automatically identifies abnormal actions of the computerized system based on the anomaly scores and said threshold, and periodically repeats the training process.
    • 公开了一种在计算机化系统操作期间自动识别异常情况的方法,其将由计算机化系统执行的动作记录为历史文件中的特征,仅从历史文件中的正常数据自动创建每个特征的模型,通过计算异常得分进行训练 建立一个阈值来评估特征是否异常,根据异常得分和阈值自动识别计算机化系统的异常动作,并定期重复训练过程。