会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 72. 发明申请
    • STABILIZATION OF OBJECTS WITHIN A VIDEO SEQUENCE
    • 在视频序列中对象的稳定性
    • US20070104383A1
    • 2007-05-10
    • US11534646
    • 2006-09-23
    • Nebojsa JojicBrendan Frey
    • Nebojsa JojicBrendan Frey
    • G06K9/40
    • G06T7/215G06T2207/10016G06T2207/30196
    • A simplified general model and an associated estimation algorithm is provided for modeling visual data such as a video sequence. Specifically, images or frames in a video sequence are represented as collections of flat moving objects that change their appearance and shape over time, and can occlude each other over time. A statistical generative model is defined for generating such visual data where parameters such as appearance bit maps and noise, shape bit-maps and variability in shape, etc., are known. Further, when unknown, these parameters are estimated from visual data without prior pre-processing by using a maximization algorithm. By parameter estimation and inference in the model, visual data is segmented into components which facilitates sophisticated applications in video or image editing, such as, for example, object removal or insertion, tracking and visual surveillance, video browsing, photo organization, video compositing, etc.
    • 提供了简化的一般模型和相关联的估计算法用于对诸如视频序列的视觉数据进行建模。 具体来说,视频序列中的图像或帧被表示为随时间改变其外观和形状的平坦移动对象的集合,并且可以随着时间而彼此闭塞。 定义了统计生成模型,用于生成这样的视觉数据,其中诸如出现位图和噪声,形状位图和形状变异等参数是已知的。 此外,当未知时,这些参数是通过使用最大化算法从视觉数据估计而没有预先预处理的。 通过模型中的参数估计和推理,视觉数据被分割成有助于视频或图像编辑中的复杂应用的组件,例如对象去除或插入,跟踪和视觉监视,视频浏览,照片组织,视频合成, 等等
    • 75. 发明申请
    • Interactive montages of sprites for indexing and summarizing video
    • 用于索引和总结视频的精灵互动蒙太奇
    • US20060117356A1
    • 2006-06-01
    • US11004760
    • 2004-12-01
    • Nebojsa JojicChris Pal
    • Nebojsa JojicChris Pal
    • H04N7/173H04N7/16
    • G06F17/30811G06F17/30843G06F17/30852G11B27/034G11B27/28G11B27/34H04N21/44008H04N21/44029H04N21/45452H04N21/8193H04N21/8549Y10S345/95
    • A “Video Browser” provides interactive browsing of unique events occurring within an overall video recording. In particular, the Video Browser processes the video to generate a set of video sprites representing unique events occurring within the overall period of the video. These unique events include, for example, motion events, security events, or other predefined event types, occurring within all or part of the total period covered by the video. Once the video has been processed to identify the sprites, the sprites are then arranged over a background image extracted from the video to create an interactive static video montage. The interactive video montage illustrates all events occurring within the video in a single static frame. User selection of sprites within the montage causes either playback of a portion of the video in which the selected sprites were identified, or concurrent playback of the selected sprites within a dynamic video montage.
    • “视频浏览器”提供了在整个视频录制中发生的独特事件的交互式浏览。 特别地,视频浏览器处理视频以生成表示在视频的整个周期内发生的唯一事件的一组视频精灵。 这些独特的事件包括例如运动事件,安全事件或其他预定义的事件类型,发生在视频所涵盖的整个周期的全部或部分内。 一旦视频被处理以识别精灵,则将精灵布置在从视频提取的背景图像上,以创建交互式静态视频蒙太奇。 交互式视频蒙太奇在单个静态帧中说明视频内发生的所有事件。 蒙太奇内的精灵的用户选择导致播放所选择的精灵被识别的视频的一部分,或动态视频蒙太奇中所选精灵的并发回放。
    • 76. 发明申请
    • System and method for fast on-line learning of transformed hidden Markov models
    • 用于快速在线学习变换隐马尔科夫模型的系统和方法
    • US20050047646A1
    • 2005-03-03
    • US10649382
    • 2003-08-27
    • Nebojsa JojicNemanja Petrovic
    • Nebojsa JojicNemanja Petrovic
    • G06K9/00G06K9/34G06K9/62G11B27/00G11B27/28
    • G11B27/28G06K9/00711G06K9/6297
    • A fast variational on-line learning technique for training a transformed hidden Markov model. A simplified general model and an associated estimation algorithm is provided for modeling visual data such as a video sequence. Specifically, once the model has been initialized, an expectation-maximization (“EM”) algorithm is used to learn the one or more object class models, so that the video sequence has high marginal probability under the model. In the expectation step (the “E-Step”), the model parameters are assumed to be correct, and for an input image, probabilistic inference is used to fill in the values of the unobserved or hidden variables, e.g., the object class and appearance. In one embodiment of the invention, a Viterbi algorithm and a latent image is employed for this purpose. In the maximization step (the “M-Step”), the model parameters are adjusted using the values of the unobserved variables calculated in the previous E-step. Instead of using batch processing typically used in EM processing, the system and method according to the invention employs an on-line algorithm that passes through the data only once and which introduces new classes as the new data is observed is proposed. By parameter estimation and inference in the model, visual data is segmented into components which facilitates sophisticated applications in video or image editing, such as, for example, object removal or insertion, tracking and visual surveillance, video browsing, photo organization, video compositing, and meta data creation.
    • 一种快速变化的在线学习技术,用于训练变换后的隐马尔可夫模型。 提供了简化的一般模型和相关联的估计算法用于对诸如视频序列的视觉数据进行建模。 具体来说,一旦模型被初始化,使用期望最大化(“EM”)算法来学习一个或多个对象类模型,使得视频序列在该模型下具有高边际概率。 在期望步骤(“E步骤”)中,假设模型参数是正确的,对于输入图像,使用概率推理来填充未观察或隐藏变量的值,例如对象类和 出现。 在本发明的一个实施例中,为此目的采用维特比算法和潜像。 在最大化步骤(“M步骤”)中,使用在先前E步骤中计算的未观察到的变量的值来调整模型参数。 代替使用通常在EM处理中使用的批量处理,根据本发明的系统和方法采用在线算法,其仅通过数据一次,并且在提出观察新数据时引入新类。 通过模型中的参数估计和推理,视觉数据被分割成有助于视频或图像编辑中的复杂应用的组件,例如对象去除或插入,跟踪和视觉监视,视频浏览,照片组织,视频合成, 和元数据创建。
    • 77. 发明授权
    • System and method for visually tracking occluded objects in real time
    • 用于实时视觉跟踪遮挡对象的系统和方法
    • US06674877B1
    • 2004-01-06
    • US09496996
    • 2000-02-03
    • Nebojsa JojicMatthew A. Turk
    • Nebojsa JojicMatthew A. Turk
    • G06K900
    • G06K9/00369G06K9/32G06T7/251G06T2207/10016G06T2207/30196
    • The present invention is embodied in a system and method for digitally tracking objects in real time. The present invention visually tracks three-dimensional (3-D) objects in dense disparity maps in real time. Tracking of the human body is achieved by digitally segmenting and modeling different body parts using statistical models defined by multiple size parameters, position and orientation. In addition, the present invention is embodied in a system and method for recognizing mutual occlusions of body parts and filling in data for the occluded parts while tracking a human body. The body parts are preferably tracked from frame to frame in image sequences as an articulated structure in which the body parts are connected at the joints instead of as individual objects moving and changing shape and orientation freely.
    • 本发明体现在实时数字跟踪对象的系统和方法中。 本发明实时地视觉地跟踪密度差异图中的三维(3-D)物体。 通过使用由多个尺寸参数,位置和方向定义的统计模型对不同身体部位进行数字分割和建模来实现人体的跟踪。 此外,本发明体现在用于识别身体部位的相互遮挡并且在跟踪人体时填充闭塞部分的数据的系统和方法中。 身体部分优选地以帧为单位的图像序列作为关节结构被跟踪,其中身体部分在关节处连接而不是作为单独的物体自由移动和改变形状和取向。