会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 71. 发明授权
    • Nanotube fuse structure
    • 纳米管保险丝结构
    • US07598127B2
    • 2009-10-06
    • US11284503
    • 2005-11-22
    • Bruce J. WhitefieldDerryl D. J. AllmanThomas RueckesClaude L. Bertin
    • Bruce J. WhitefieldDerryl D. J. AllmanThomas RueckesClaude L. Bertin
    • H01L21/86
    • H01L23/5258H01L23/5256H01L2924/0002Y10S977/742H01L2924/00
    • A method of forming a carbon nanotube fuse by depositing a carbon nanotube layer, then depositing a cap layer directly over the carbon nanotube layer. The cap layer is formed of a material that has an insufficient amount of oxygen to significantly oxidize the carbon nanotube layer under operating conditions, and is otherwise sufficiently robust to protect the carbon nanotube layer from oxygen and plasmas. A photoresist layer is formed over the cap layer, and the photoresist layer is patterned to define a desired size of fuse. Both the cap layer and the carbon nanotube layer are completely etched, without removing the photoresist layer, to define the fuse having two ends in the carbon nanotube layer. Just the cap layer is etched, without removing the photoresist layer, so as to reduce the cap layer by a desired amount at the edges of the cap layer under the photoresist layer, without damaging the carbon nanotube layer. The photoresist layer is removed, and electrically conductive contacts are formed on each of the two ends of the fuse.
    • 通过沉积碳纳米管层形成碳纳米管熔丝,然后在碳纳米管层上直接沉积覆盖层的方法。 盖层由具有不足量的氧的材料形成,以在操作条件下显着地氧化碳纳米管层,否则足够坚固以保护碳纳米管层免受氧气和等离子体的影响。 在盖层上形成光致抗蚀剂层,并且将光致抗蚀剂层图案化以限定所需尺寸的熔丝。 完全蚀刻盖层和碳纳米管层,而不去除光致抗蚀剂层,以限定在碳纳米管层中具有两端的熔丝。 只是盖层被蚀刻,而不去除光致抗蚀剂层,以便在光致抗蚀剂层下的盖层的边缘处将盖层减少所需量,而不损害碳纳米管层。 去除光致抗蚀剂层,并且在熔丝的两端的每一端上形成导电触点。
    • 72. 发明授权
    • Random access memory including nanotube switching elements
    • 随机存取存储器包括纳米管开关元件
    • US07583526B2
    • 2009-09-01
    • US11879352
    • 2007-07-17
    • Claude L. BertinThomas RueckesBrent M. Segal
    • Claude L. BertinThomas RueckesBrent M. Segal
    • G11C11/00
    • G11C11/412B82Y10/00G11C13/025G11C14/00G11C23/00G11C2213/17H01H1/0094H01H1/027H01L27/28H01L29/0665H01L29/0673H01L29/73H01L29/78H01L51/0048H01L51/0508Y10S977/936Y10S977/938Y10S977/943Y10T29/49002
    • Random access memory including nanotube switching elements. A memory cell includes first and second nanotube switching elements and an electronic memory. Each nanotube switching element includes conductive terminals, a nanotube article and control circuitry capable of controllably form and unform an electrically conductive channel between the conductive terminals. The electronic memory is a volatile storage device capable of storing a logic state in response to electrical stimulus. In certain embodiment the electronic memory has cross-coupled first and second inverters in electrical communication with the first and second nanotube switching elements. The cell can operate as a normal electronic memory, or can operate in a shadow memory or store mode (e.g., when power is interrupted) to transfer the electronic memory state to the nanotube switching elements. The device may later be operated in a recall mode where the state of the nanotube switching elements may be transferred to the electronic memory.
    • 随机存取存储器包括纳米管开关元件。 存储单元包括第一和第二纳米管切换元件和电子存储器。 每个纳米管切换元件包括导电端子,纳米管制品和能够可控地形成和取消导电端子之间的导电通道的控制电路。 电子存储器是能够响应于电刺激而存储逻辑状态的易失性存储装置。 在某些实施例中,电子存储器具有与第一和第二纳米管切换元件电连通的交叉耦合的第一和第二反相器。 电池可以作为普通电子存储器工作,或者可以在阴影存储器或存储模式(例如,当电力中断时)操作以将电子存储器状态传送到纳米管开关元件。 该装置可以稍后在调谐模式下操作,其中纳米管切换元件的状态可以被传送到电子存储器。
    • 74. 发明授权
    • Patterned nanowire articles on a substrate and methods of making the same
    • 在衬底上形成图案的纳米线制品及其制造方法
    • US07416993B2
    • 2008-08-26
    • US10936119
    • 2004-09-08
    • Brent M. SegalThomas RueckesClaude L. Bertin
    • Brent M. SegalThomas RueckesClaude L. Bertin
    • H01L21/302
    • H01L51/0048B82Y10/00H01L51/0023H01L2924/0002Y10S977/724Y10S977/762Y10S977/767Y10S977/856H01L2924/00
    • Nanowire articles and methods of making the same are disclosed. A conductive article includes a plurality of inter-contacting nanowire segments that define a plurality of conductive pathways along the article. The nanowire segments may be semiconducting nanowires, metallic nanowires, nanotubes, single walled carbon nanotubes, multi-walled carbon nanotubes, or nanowires entangled with nanotubes. The various segments may have different lengths and may include segments having a length shorter than the length of the article. A strapping material may be positioned to contact a portion of the plurality of nanowire segments. The strapping material may be patterned to create the shape of a frame with an opening that exposes an area of the nanowire fabric. Such a strapping layer may also be used for making electrical contact to the nanowire fabric especially for electrical stitching to lower the overall resistance of the fabric.
    • 公开了纳米线制品及其制造方法。 导电制品包括沿着制品限定多个导电通路的多个接触接触的纳米线段。 纳米线段可以是半导体纳米线,金属纳米线,纳米管,单壁碳纳米管,多壁碳纳米管或与纳米管缠结的纳米线。 各个片段可以具有不同的长度,并且可以包括长度短于制品的长度的片段。 捆扎材料可以被定位成接触多个纳米线段的一部分。 捆扎材料可以被图案化以产生具有暴露纳米线织物的区域的开口的框架的形状。 这种捆扎层也可以用于与纳米线织物的电接触,特别是用于电缝合以降低织物的整体阻力。
    • 75. 发明授权
    • Storage elements using nanotube switching elements
    • 使用纳米管开关元件的存储元件
    • US07405605B2
    • 2008-07-29
    • US11651263
    • 2007-01-09
    • Claude L. Bertin
    • Claude L. Bertin
    • H03K3/289H03K3/356
    • B82Y10/00G11C13/025Y10S977/936Y10S977/94
    • Data storage circuits and components of such circuits constructed using nanotube switching elements. The storage circuits may be stand-alone devices or cells incorporated into other devices or circuits. The data storage circuits include or can be used in latches, master-slave flip-flops, digital logic circuits, memory devices and other circuits. In one aspect of the invention, a master-slave flip-flop is constructed using one or more nanotube switching element-based storage devices. The master storage element or the slave storage element or both may be constructed using nanotube switching elements, for example, using two nanotube switching element-based inverters. The storage elements may be volatile or non-volatile. An equilibration device is provided for protecting the stored data from fluctuations on the inputs. Input buffers and output buffers for data storage circuits of the invention may also be constructed using nanotube switching elements.
    • 使用纳米管开关元件构造的这种电路的数据存储电路和部件。 存储电路可以是并入设备或电路中的独立设备或单元。 数据存储电路包括或可用于锁存器,主从触发器,数字逻辑电路,存储器件和其它电路。 在本发明的一个方面,使用一个或多个基于纳米管开关元件的存储装置来构造主从触发器。 主存储元件或从存储元件或二者可以使用例如使用两个基于纳米管开关元件的反相器的纳米管开关元件来构造。 存储元件可以是挥发性的或非挥发性的。 提供了一种平衡装置,用于保护存储的数据免受输入上的波动。 本发明的数据存储电路的输入缓冲器和输出缓冲器也可以使用纳米管开关元件构成。
    • 78. 发明授权
    • Receiver circuit using nanotube-based switches and logic
    • 接收器电路采用基于纳米管的开关和逻辑
    • US07330709B2
    • 2008-02-12
    • US11033215
    • 2005-01-10
    • Claude L. Bertin
    • Claude L. Bertin
    • H04B1/16H03K19/20
    • G11C13/025B82Y10/00G11C2213/17Y10S977/936Y10S977/938Y10S977/94
    • Receiver circuits using nanotube based switches and logic. Preferably, the circuits are dual-rail (differential). A receiver circuit includes a differential input having a first and second input link, and a differential output having a first and second output link. First, second, third and fourth switching elements each have an input node, an output node, a nanotube channel element, and a control structure disposed in relation to the nanotube channel element to controllably form and unform an electrically conductive channel between said input node and said output node. The receiver circuit can sense small voltage inputs and convert them to larger voltage swings.
    • 使用基于纳米管的开关和逻辑的接收器电路。 优选地,电路是双轨(差分)。 接收器电路包括具有第一和第二输入链路的差分输入和具有第一和第二输出链路的差分输出。 第一,第二,第三和第四开关元件各自具有相对于纳米管通道元件设置的输入节点,输出节点,纳米管通道元件和控制结构,以可控地形成和取消所述输入节点和 所述输出节点。 接收器电路可以感测小电压输入并将其转换为更大的电压摆幅。
    • 79. 发明授权
    • Nanotube-on-gate FET structures and applications
    • 纳米管栅极FET结构和应用
    • US07294877B2
    • 2007-11-13
    • US10811373
    • 2004-03-26
    • Thomas RueckesBrent M. SegalBernard VogeliDarren K. BrockVenkatachalam C. JaiprakashClaude L. Bertin
    • Thomas RueckesBrent M. SegalBernard VogeliDarren K. BrockVenkatachalam C. JaiprakashClaude L. Bertin
    • H01L51/30
    • H01L51/055B82Y10/00G11C13/025G11C16/0416G11C23/00G11C2213/17H01L29/0665H01L29/0673H01L29/42324H01L51/0048H01L51/0052
    • Nanotube on gate FET structures and applications of such, including n2 crossbars requiring only 2n control lines. A non-volatile transistor device includes a source region and a drain region of a first semiconductor type of material and a channel region of a second semiconductor type of material disposed between the source and drain region. A gate structure is made of at least one of semiconductive or conductive material and is disposed over an insulator over the channel region. A control gate is made of at least one of semiconductive or conductive material. An electromechanically-deflectable nanotube switching element is in fixed contact with one of the gate structure and the control gate structure and is not in fixed contact with the other of the gate structure and the control gate structure. The device has a network of inherent capacitances, including an inherent capacitance of an undeflected nanotube switching element in relation to the gate structure. The network is such that the nanotube switching element is deflectable into contact with the other of the gate structure and the control gate structure in response to signals being applied to the control gate and one of the source region and drain region. Certain embodiments of the device have an area of about 4 F2. Other embodiments include a release line is positioned in spaced relation to the nanotube switching element, and having a horizontal orientation that is parallel to the orientation of the source and drain diffusions. Other embodiments provide an n2 crossbar array having n2 non-volatile transistor devices, but require only 2n control lines.
    • 纳米管栅极FET结构及其应用,包括只需要2n条控制线的n 2条交叉。 非挥发性晶体管器件包括第一半导体类型的材料的源极区域和漏极区域以及设置在源极和漏极区域之间的第二半导体类型的材料的沟道区域。 栅极结构由半导体或导电材料中的至少一种制成,并且设置在沟道区域上方的绝缘体上。 控制门由半导体或导电材料中的至少一种制成。 机电偏转型纳米管开关元件与栅极结构和控制栅极结构中的一个固定接触,并且不与栅极结构和控制栅极结构中的另一个固定接触。 该器件具有固有电容的网络,包括相对于栅极结构的未折射的纳米管开关元件的固有电容。 网络使得纳米管开关元件响应于施加到控制栅极和源极区域和漏极区域之一的信号而偏转成与栅极结构和控制栅极结构中的另一个接触。 该装置的某些实施例具有约4F 2的面积。 其他实施例包括释放线与纳米管开关元件间隔开定位,并且具有平行于源极和漏极扩散的取向的水平取向。 其他实施例提供了具有n 2个非易失性晶体管器件的n≥2的交叉开关阵列,但是仅需要2n个控制线。
    • 80. 发明授权
    • Random access memory including nanotube switching elements
    • 随机存取存储器包括纳米管开关元件
    • US07245520B2
    • 2007-07-17
    • US11231213
    • 2005-09-20
    • Claude L. BertinThomas RuckesBrent M. Segal
    • Claude L. BertinThomas RuckesBrent M. Segal
    • G11C11/00G11C11/50G11C7/10B82B1/00
    • G11C13/025B82Y10/00G11C14/00G11C23/00Y10S977/732Y10S977/733Y10S977/936Y10S977/938Y10S977/943
    • A random access memory cell includes first and second nanotube switching elements and an electronic memory with cross-coupled first and second inverters. Each nanotube switching element includes a nanotube channel element having at least one electrically conductive nanotube, and a set electrode and a release electrode disposed in relation to the nanotube channel element to controllably form and unform an electrically conductive channel between a channel electrode and an output node. Input nodes of the first and second inverters are coupled to the set electrodes and the output nodes of the first and second nanotube switching elements. The cell can operate as a normal electronic memory, or in a shadow memory or store mode to transfer the electronic memory state to the nanotube switching elements. The device may later be operated in a recall mode to transfer the state of the nanotube switching elements to the electronic memory.
    • 随机存取存储单元包括第一和第二纳米管切换元件以及具有交叉耦合的第一和第二反相器的电子存储器。 每个纳米管开关元件包括具有至少一个导电纳米管的纳米管通道元件,以及相对于纳米管通道元件设置的设定电极和释放电极,以可控制地形成和取消通道电极与输出节点之间的导电通道 。 第一和第二反相器的输入节点耦合到第一和第二纳米管切换元件的设定电极和输出节点。 电池可以作为正常的电子存储器,或者在阴影存储器或存储模式下操作,以将电子存储器状态传送到纳米管开关元件。 该装置可以稍后在召回模式下操作以将纳米管开关元件的状态转移到电子存储器。