会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 73. 发明申请
    • METHOD FOR FORMING A SEMICONDUCTOR STRUCTURE HAVING A STRAINED SILICON LAYER
    • 用于形成具有应变硅层的半导体结构的方法
    • US20070277728A1
    • 2007-12-06
    • US11421009
    • 2006-05-30
    • Mariam G. SadakaAlexander L. BarrBich-Yen NguyenVoon-Yew TheanTed R. White
    • Mariam G. SadakaAlexander L. BarrBich-Yen NguyenVoon-Yew TheanTed R. White
    • C30B21/04C30B13/00
    • C30B29/52C30B25/02H01L21/0245H01L21/0251H01L21/02532H01L21/0262H01L21/76254
    • A wafer having a silicon layer that is strained is used to form transistors. The silicon layer is formed by first forming a silicon germanium (SiGe) layer of at least 30 percent germanium that has relaxed strain on a donor wafer. A thin silicon layer is epitaxially grown to have tensile strain on the relaxed SiGe layer. The amount tensile strain is related to the germanium concentration. A high temperature oxide (HTO) layer is formed on the thin silicon layer by reacting dichlorosilane and nitrous oxide at a temperature of preferably between 800 and 850 degrees Celsius. A handle wafer is provided with a supporting substrate and an oxide layer that is then bonded to the HTO layer. The HTO layer, being high density, is able to hold the tensile strain of the thin silicon layer. The relaxed SiGe layer is cleaved then etched away to expose the thin silicon layer. A low temperature silicon layer is then epitaxially grown with tensile strain, correlated to the tensile strain of the thin silicon layer, on the thin silicon layer using trisilane at a temperature preferably not in excess of 500 degrees Celsius. The resulting tensile strain, correlated to the strain of the thin silicon layer, is thus also correlated to the germanium concentration of the relaxed SiGe layer. The thickness of the low temperature silicon layer, using the trisilane at low temperature, is significantly greater than what would normally be expected for a silicon layer of that tensile strain.
    • 具有应变的硅层的晶片用于形成晶体管。 通过首先在施主晶片上形成具有松弛应变的至少30%的锗的锗锗(SiGe)层来形成硅层。 外延生长薄硅层以在松弛的SiGe层上具有拉伸应变。 拉伸应变量与锗浓度有关。 优选在800至850摄氏度之间的温度下,通过使二氯硅烷和一氧化二氮反应,在薄硅层上形成高温氧化物(HTO)层。 手柄晶片设置有支撑基板和氧化物层,然后将其结合到HTO层。 高密度的HTO层能够保持薄硅层的拉伸应变。 松弛的SiGe层被切割,然后蚀刻掉以露出薄的硅层。 然后在优选不超过500摄氏度的温度下使用丙硅烷在薄硅层上外延生长与低硅薄层的拉伸应变相关的低温硅层。 因此,与薄硅层的应变相关的所得拉伸应变也与弛豫SiGe层的锗浓度相关。 在低温下使用丙硅烷的低温硅层的厚度明显大于该拉伸应变的硅层通常预期的厚度。
    • 75. 发明授权
    • Transitional dielectric layer to improve reliability and performance of high dielectric constant transistors
    • 过渡介电层提高高介电常数晶体管的可靠性和性能
    • US07235502B2
    • 2007-06-26
    • US11096515
    • 2005-03-31
    • Sriram S. KalpatVoon-Yew TheanHsing H. TsengOlubunmi O. Adetutu
    • Sriram S. KalpatVoon-Yew TheanHsing H. TsengOlubunmi O. Adetutu
    • H01L21/31
    • H01L21/022H01L21/02175H01L21/0228H01L21/28194H01L21/3141H01L29/513H01L29/517
    • A gate dielectric structure (201) fabrication process includes forming a transitional dielectric film (205) overlying a silicon oxide film (204). A high dielectric constant film (206) is then formed overlying an upper surface of the transitional dielectric film (205). The composition of the transitional dielectric film (205) at the silicon oxide film (204) interface primarily comprises silicon and oxygen. The high K dielectric (206) and the composition of the transitional dielectric film (205) near the upper surface primarily comprise a metal element and oxygen. Forming the transitional dielectric film (205) may include forming a plurality of transitional dielectric layers (207) where the composition of each successive transitional dielectric layer (207) has a higher concentration of the metal element and a lower concentration of silicon. Forming the transitional dielectric layer (205) may include performing multiple cycles of an atomic layer deposition process (500) where a precursor concentration for each cycle differs from the precursor concentration of the preceding cycle.
    • 栅极电介质结构(201)制造工艺包括形成覆盖氧化硅膜(204)的过渡电介质膜(205)。 然后形成覆盖在过渡介电膜(205)的上表面上的高介电常数膜(206)。 氧化硅膜(204)界面处的过渡电介质膜(205)的组成主要包括硅和氧。 高K电介质(206)和上表面附近的过渡电介质膜(205)的组成主要包括金属元素和氧。 形成过渡电介质膜(205)可以包括形成多个过渡介电层(207),其中每个连续的过渡介电层(207)的组成具有较高的金属元素浓度和较低的硅浓度。 形成过渡电介质层(205)可以包括执行原子层沉积工艺(500)的多个循环,其中每个循环的前体浓度与先前循环的前体浓度不同。
    • 76. 发明申请
    • Method for forming a semiconductor structure and structure thereof
    • 半导体结构的形成方法及其结构
    • US20070099353A1
    • 2007-05-03
    • US11263120
    • 2005-10-31
    • Voon-Yew TheanJian ChenBich-Yen NguyenMariam SadakaDa Zhang
    • Voon-Yew TheanJian ChenBich-Yen NguyenMariam SadakaDa Zhang
    • H01L21/84
    • H01L21/845H01L27/1211H01L29/7842H01L29/785Y10S438/938
    • Forming a semiconductor structure includes providing a substrate having a strained semiconductor layer overlying an insulating layer, providing a first device region for forming a first plurality of devices having a first conductivity type, providing a second device region for forming a second plurality of devices having a second conductivity type, and thickening the strained semiconductor layer in the second device region so that the strained semiconductor layer in the second device region has less strain that the strained semiconductor layer in the first device region. Alternatively, forming a semiconductor structure includes providing a first region having a first conductivity type, forming an insulating layer overlying at least an active area of the first region, anisotropically etching the insulating layer, and after anisotropically etching the insulating layer, deposing a gate electrode material overlying at least a portion of the insulating layer.
    • 形成半导体结构包括提供具有覆盖在绝缘层上的应变半导体层的衬底,提供用于形成具有第一导电类型的第一多个器件的第一器件区域,提供第二器件区域,用于形成具有第 第二导电类型,并且使第二器件区域中的应变半导体层变厚,使得第二器件区域中的应变半导体层具有较小的第一器件区域中的应变半导体层的应变。 或者,形成半导体结构包括提供具有第一导电类型的第一区域,形成覆盖第一区域的至少有源区域的绝缘层,各向异性地蚀刻绝缘层,以及在各向异性蚀刻绝缘层之后, 覆盖绝缘层的至少一部分的材料。
    • 79. 发明申请
    • Asymmetric spacers and asymmetric source/drain extension layers
    • 非对称隔离层和不对称源极/漏极延伸层
    • US20060170016A1
    • 2006-08-03
    • US11047946
    • 2005-02-01
    • Leo MathewYang DuBich-Yen NguyenVoon-Yew Thean
    • Leo MathewYang DuBich-Yen NguyenVoon-Yew Thean
    • H01L29/78H01L21/336
    • H01L29/4983H01L29/165H01L29/517H01L29/665H01L29/6653H01L29/6656H01L29/66628H01L29/66659H01L29/7843
    • A method of forming a semiconductor device is provided in which a substrate (102) is provided which has a gate dielectric layer (106) disposed thereon, and a gate electrode (116) having first and second sidewalls is formed over the gate dielectric layer. First (146) and second (150) extension spacer structures are formed adjacent the first and second sidewalls, respectively. In the resulting device: (a) the first and second extension spacer structures have different dimensions; (b) the first and second extension spacer structures comprise first and second distinct materials; (c) the device has asymmetric source/drain extensions (162); and/or (d) the device has an oxide layer (160) disposed between the first extension spacer structure and the gate electrode, and either (i) the device has no dielectric layer disposed between the second extension spacer structure and the gate electrode, or (ii) the device has a second dielectric layer disposed between the second extension spacer structure and the gate electrode, and the first dielectric layer is substantially thicker than the second dielectric layer.
    • 提供一种形成半导体器件的方法,其中设置有其上设置有栅介质层(106)的衬底(102),并且在栅极介电层上形成具有第一和第二侧壁的栅电极(116)。 分别在第一和第二侧壁附近形成第一(146)和第二(150)延伸间隔结构。 在所得装置中:(a)第一和第二延伸间隔结构具有不同的尺寸; (b)第一和第二延伸间隔结构包括第一和第二不同材料; (c)该器件具有不对称的源极/漏极延伸部分(162); 和/或(d)所述器件具有设置在所述第一延伸间隔物结构和所述栅电极之间的氧化物层(160),以及(i)所述器件在所述第二延伸间隔物结构和所述栅电极之间没有设置介电层, 或者(ii)该器件具有设置在第二延伸间隔物结构和栅极之间的第二介电层,并且第一介电层基本上比第二介电层更厚。