会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 71. 发明授权
    • Large diameter optical waveguide, grating and laser
    • 大直径光波导,光栅和激光
    • US07437043B2
    • 2008-10-14
    • US11324759
    • 2006-01-03
    • Martin A. PutnamRobert N. BrucatoPaul E. SandersTimothy J. BaileyJames M. SullivanAlan D. Kersey
    • Martin A. PutnamRobert N. BrucatoPaul E. SandersTimothy J. BaileyJames M. SullivanAlan D. Kersey
    • G02B6/02
    • G02B6/022G02B6/02G02B6/02042H01S3/06708H01S3/06729H01S3/06754
    • A large diameter optical waveguide, grating, and laser includes a waveguide 10 having at least one core 12 surrounded by a cladding 14, the core propagating light in substantially a few transverse spatial modes; and having an outer waveguide dimension d2 of said waveguide being greater than about 0.3 mm. At least one Bragg grating 16 may be impressed in the waveguide 10. The waveguide 10 may be axially compressed which causes the length L of the waveguide 10 to decrease without buckling. The waveguide 10 may be used for any application where a waveguide needs to be compression tuned, e.g., compression-tuned fiber gratings and lasers or other applications. Also, the waveguide 10 exhibits lower mode coupling from the core 12 to the cladding 14 and allows for higher optical power to be used when writing gratings 16 without damaging the waveguide 10. The shape of the waveguide 10 may have other geometries (e.g., a “dogbone” shape) and/or more than one grating or pair of gratings may be used and more than one core may be used. The core and/or cladding 12,14 may be doped with a rare-earth dopant and/or may be photosensitive. At least a portion of the core 12 may be doped between a pair of gratings 50,52 to form a fiber laser or the grating 16 or may be constructed as a tunable DFB fiber laser or an interactive fiber laser within the waveguide 10. The waveguide may resemble a short “block” or a longer “cane” type, depending on the application and dimensions used.
    • 大直径光波导,光栅和激光器包括具有由包层14围绕的至少一个芯12的波导10,芯以基本上几个横向空间模式传播光; 并且所述波导的外波导尺寸d 2大于约0.3mm。 可以在波导10中施加至少一个布拉格光栅16.波导10可以被轴向压缩,这导致波导10的长度L在没有弯曲的情况下减小。 波导管10可用于波导需要被压缩调谐的任何应用,例如压缩调谐的光纤光栅和激光器或其它应用。 此外,波导10表现出从芯12到包层14的较低模式耦合,并且允许在写入光栅16时使用更高的光功率,而不损坏波导10.波导10的形状可具有其他几何形状(例如, “狗骨”形状)和/或可以使用多于一个的光栅或一对光栅,并且可以使用多于一个的核心。 芯和/或包层12,14可掺杂稀土掺杂剂和/或可以是光敏的。 芯12的至少一部分可以掺杂在一对光栅50,52之间以形成光纤激光器或光栅16,或者可以被构造为波导10内的可调DFB光纤激光器或交互光纤激光器。波导 可能类似于短的“块”或更长的“手杖”类型,具体取决于所使用的应用和尺寸。
    • 75. 发明授权
    • Fluid parameter measurement for industrial sensing applications using acoustic pressures
    • 使用声压的工业传感应用的流体参数测量
    • US06732575B2
    • 2004-05-11
    • US10007749
    • 2001-11-08
    • Daniel L. GyslingAlan D. KerseyJames D. Paduano
    • Daniel L. GyslingAlan D. KerseyJames D. Paduano
    • G01N2900
    • G01H5/00G01N29/024G01N29/42G01N29/46G01N2291/0217G01N2291/0222G01N2291/0224G01N2291/02836G01N2291/02845G01N2291/02872G01N2291/106
    • In industrial sensing applications at least one parameter of at least one fluid in a pipe 12 is measured using a spatial array of acoustic pressure sensors 14,16,18 placed at predetermined axial locations x1, x2, x3 along the pipe 12. The pressure sensors 14,16,18 provide acoustic pressure signals P1(t), P2(t), P3(t) on lines 20,22,24 which are provided to signal processing logic 60 which determines the speed of sound amix of the fluid (or mixture) in the pipe 12 using acoustic spatial array signal processing techniques with the direction of propagation of the acoustic signals along the longitudinal axis of the pipe 12. Numerous spatial array-processing techniques may be employed to determine the speed of sound amix. The speed of sound amix is provided to logic 48, which calculates the percent composition of the mixture, e.g., water fraction, or any other parameter of the mixture, or fluid, which is related to the sound speed amix. The logic 60 may also determine the Mach number Mx of the fluid. The acoustic pressure signals P1(t), P2(t), P3(t) measured are lower frequency (and longer wavelength) signals than those used for ultrasonic flow meters, and thus is more tolerant to inhomogeneities in the flow. No external source is required and thus may operate using passive listening. The invention will work with arbitrary sensor spacing and with as few as two sensors if certain information is known about the acoustic properties of the system. The sensor may also be combined with an instrument, an opto-electronic converter and a controller in an industrial process control system.
    • 在工业感测应用中,使用放置在沿着管12的预定轴向位置x1,x2,x3处的声压传感器14,16,18的空间阵列来测量管道12中的至少一种流体的至少一个参数。压力传感器 提供给信号处理逻辑60的线20,22,24上的声压信号P1(t),P2(t),P3(t),该信号处理逻辑60确定流体的声音amix的速度(或 混合物)使用声空间阵列信号处理技术,其中声信号沿着管12的纵轴传播的方向。可以采用许多空间阵列处理技术来确定声音的速度。 声音amix的速度被提供给逻辑48,逻辑48计算混合物的组成百分比,例如水分数,或与声速amix相关的混合物或流体的任何其它参数。 逻辑60还可以确定流体的马赫数Mx。 测得的声压信号P1(t),P2(t),P3(t)比用于超声波流量计的声压信号P1(t),P2(t),P3(t)更低频率(和更长波长)的信号,因此更容忍流量的不均匀性。 不需要外部来源,因此可以使用被动收听操作。 如果关于系统的声学特性的某些信息已知,本发明将适用于任意的传感器间距,并且具有少至两个传感器。 传感器还可以与工业过程控制系统中的仪器,光电转换器和控制器组合。
    • 76. 发明授权
    • Temperature compensated optical device
    • 温度补偿光学器件
    • US06621957B1
    • 2003-09-16
    • US09699940
    • 2000-10-30
    • James M. SullivanTimothy J. BaileyRobert N. BrucatoThomas W. EngelMark R. FernaldRichard T. JonesAlan D. KerseyTrevor MacDougallMatthew B. MillerMartin A. PutnamPaul E. SandersJames S. Sirkis
    • James M. SullivanTimothy J. BaileyRobert N. BrucatoThomas W. EngelMark R. FernaldRichard T. JonesAlan D. KerseyTrevor MacDougallMatthew B. MillerMartin A. PutnamPaul E. SandersJames S. Sirkis
    • G02B634
    • G02F1/0115G02B6/0218H01S3/0675H01S3/1028
    • A temperature compensated optical device includes a compression-tuned glass element 10 having a Bragg grating 12 therein, a compensating material spacer 26 and an end cap 28 all held within an outer shell 30. The element 10, end cap 28 and shell 30 are made of a material having a low coefficient of thermal expansion (CTE), e.g., silica, quartz, etc. and the spacer 26 is made of a material having a higher CTE, e.g., metal, Pyrex®, ceramic, etc. The material and length L5 of the spacer 26 is selected to offset the upward grating wavelength shift due to temperature. As temperature rises, the spacer 26 expands faster than the silica structure causing a compressive strain to be exerted on the element 10, which shifts the wavelength of the grating 12 down to balance the intrinsic temperature induces wavelength shift up. As a result, the grating 12 wavelength is substantially unchanged over a wide temperature range. The element 10 includes either an optical fiber having at least one Bragg grating 12 impressed therein encased within and fused to at least a portion of a glass capillary tube or a large diameter waveguide (or cane) with a grating 12 having a core 11 and a wide cladding, which does not buckle over a large range of compressive axial strains. The element may have a “dogbone” shape to amplify compressive strain on the grating 12. The device 8 may also be placed in an axially tunable system that allows the wavelength to be dynamically tuned while remaining athermal. In addition to a grating, the device may be an athermal laser, DFB laser, etc. Also, the entire device 8 may be all made of monolithic glass materials.
    • 温度补偿光学器件包括其中具有布拉格光栅12的压缩调谐玻璃元件10,补偿材料间隔件26和端盖28,所述补偿材料间隔件26和端盖28都保持在外壳30内。元件10,端帽28和壳体30被制成 具有低热膨胀系数(CTE)的材料,例如二氧化硅,石英等,并且间隔物26由具有较高CTE(例如金属,Pyrex,陶瓷等)的材料制成。 选择间隔件26的材料和长度L5以抵消由于温度引起的向上光栅波长偏移。 随着温度升高,间隔件26比二氧化硅结构膨胀得更快,导致施加在元件10上的压缩应变,其将光栅12的波长向下移动以平衡本征温度,从而引起波长向上移动。 结果,光栅12的波长在宽温度范围内基本上不变。 元件10包括具有至少一个布拉格光栅12的光纤,该光纤封装在玻璃毛细管或大直径波导(或甘蔗)的至少一部分内并与其融合,其中光栅12具有芯11和 宽的包层,其在大范围的压缩轴向应变下不扣合。 元件可以具有“狗骨”形状以放大光栅12上的压缩应变。器件8也可以放置在轴向可调谐系统中,其允许波长被动态调谐而保持不耐热。 除了光栅之外,该器件可以是无热激光器,DFB激光器等。此外,整个器件8可以全部由单片玻璃材料制成。
    • 79. 发明授权
    • Method and system for determining the speed of sound in a fluid within a conduit
    • 用于确定导管内流体中的声速的方法和系统
    • US06587798B2
    • 2003-07-01
    • US09997221
    • 2001-11-28
    • Alan D. KerseyDaniel L. GyslingJames D. Paduano
    • Alan D. KerseyDaniel L. GyslingJames D. Paduano
    • G06F1900
    • G01N29/024G01N29/4472G01N29/46G01N2291/02872G01N2291/106G01V1/303
    • A method and corresponding system for measuring the speed of sound in a fluid contained within an elongated body, the sound transversing the elongated body substantially along a direction aligned with the longest axis of the elongated body, the method including the steps of: providing at predetermined locations an array of at least two sensors distributed along the elongated body, each sensor for discerning and signaling spatio-temporally sampled data including information indicating the pressure of the fluid at the position of the sensor; acquiring the spatio-temporally sampled data from each sensor at each of a number of instants of time; constructing a plot derivable from a plot, using a technique selected from the group consisting of spectral-based algorithms; identifying in the plot a spectral ridge, and determining the slope of the spectral ridge; and determining the speed of sound assuming a relation between the speed of sound and the slope of the spectral ridge.
    • 一种用于测量包含在细长体内的流体中的声音速度的方法和相应系统,所述声音基本上沿着与细长体的最长轴线对准的方向横切细长体,该方法包括以下步骤: 定位沿着细长主体分布的至少两个传感器的阵列,每个传感器用于识别和信令时空采样数据,包括指示传感器位置处的流体的压力的信息; 在多个时刻的每个时刻从每个传感器采集时空采样数据; 使用从由基于频谱的算法组成的组中选择的技术来构建从曲线得出的图; 在图中识别光谱脊,并确定光谱脊的斜率; 并且确定声速与光谱脊的斜率之间的关系的声速。
    • 80. 发明授权
    • Tube-encased fiber grating
    • 管状光纤光栅
    • US06519388B1
    • 2003-02-11
    • US09455865
    • 1999-12-06
    • Mark R. FernaldTimothy J. BaileyMatthew B. MillerJames M. SullivanMichael A. DavisPeter OgleAlan D. KerseyMartin A. PutnamRobert N. BrucatoPaul E. Sanders
    • Mark R. FernaldTimothy J. BaileyMatthew B. MillerJames M. SullivanMichael A. DavisPeter OgleAlan D. KerseyMartin A. PutnamRobert N. BrucatoPaul E. Sanders
    • G02B634
    • G02B6/022G02B6/0218
    • A tube-encased fiber grating includes an optical fiber 10 having at least one Bragg grating 12 impressed therein which is embedded within a glass capillary tube 20. Light 14 is incident on the grating 12 and light 16 is reflected at a reflection wavelength &lgr;1. The shape of the tube 20 may be other geometries (e.g., a “dogbone” shape) and/or more than one concentric tube may be used or more than one grating or pair of gratings may be used. The fiber 10 may be doped at least between a pair of gratings 150,152, encased in the tube 20 to form a tube-encased compression-tuned fiber laser or the grating 12 or gratings 150,152 may be constructed as a tunable DFB fiber laser encased in the tube 20. Also, the tube 20 may have an inner region 22 which is tapered away from the fiber 10 to provide strain relief for the fiber 10, or the tube 20 may have tapered (or fluted) sections 27 which have an outer geometry that decreases down to the fiber 10 and provides added fiber pull strength. Also, the tube-encased grating 12 exhibits lower mode coupling from the fiber core to the cladding modes due to the increased diameter of the cladding where the tube 20 is fused to the fiber 10 where the grating is located 12.
    • 管状光纤光栅包括光纤10,其具有嵌入其中的至少一个布拉格光栅12,该布拉格光栅12嵌入玻璃毛细管20内。光14入射到光栅12上,光16以反射波长lambd1反射。 管20的形状可以是其他几何形状(例如,“狗骨”形状)和/或可以使用多于一个的同心管,或者可以使用多于一个的光栅或一对光栅。 纤维10可以至少掺杂在一对光栅150,152之间,封装在管20中以形成管封装的压缩调谐光纤激光器,或者光栅12或光栅150,152可被构造为包含在该光纤12中的可调DFB光纤激光器。 管20也可以具有内部区域22,该内部区域22远离纤维10逐渐变细,以为纤维10提供应变消除,或者管20可以具有锥形(或凹槽)部分27,其具有外部几何形状 降低到纤维10并提供增加的纤维拉伸强度。 此外,由于包层的直径增加,管20被熔合到光栅位于12处的光纤10,管状光栅12表现出从纤维芯到包层模式的较低模式耦合。