会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 71. 发明授权
    • Combined copper plating method to improve gap fill
    • 组合镀铜方法提高间隙填充
    • US07585768B2
    • 2009-09-08
    • US11454397
    • 2006-06-16
    • Xiaomei BuAlex SeeFan ZhangJane HuiTae Jong LeeLiang Choo Hsia
    • Xiaomei BuAlex SeeFan ZhangJane HuiTae Jong LeeLiang Choo Hsia
    • H01L21/44
    • H01L21/288H01L21/2885H01L21/76873H01L21/76877
    • A method of filling gaps in dielectric layers is disclosed. A wafer is provided having a dielectric layer containing gaps to be filled with copper, some of the gaps, denoted deeper gaps, having aspect ratios so large that filling these gaps with copper using ECP could result in pinhole like voids. A blanket conformal metal barrier layer is formed and the wafer is then submerged in a solution to electroless plate a blanket conformal copper seed layer. A partial filling of deeper gaps with copper reduces the effective aspect ratios of the deeper gaps to the extent that ECP could be used to complete the copper filling of the gaps without forming pinhole like voids. ECP is then used to complete the copper filling of the gaps. The wafer is annealed and CMP performed to planarize the surface, giving rise to a structure in which the gaps are filled with copper and are separated by the dielectric layer.
    • 公开了一种在电介质层中填充间隙的方法。 提供具有包含要填充铜的间隙的电介质层的晶片,其中一些间隙表示为更深的间隙,其纵横比大到使用ECP填充这些间隙的铜可导致针孔状空隙。 形成覆盖的共形金属阻挡层,然后将晶片浸没在无电镀平板上的覆盖层保形铜种子层的溶液中。 用铜部分填充更深的间隙可以减少较深间隙的有效纵横比,使得ECP可以用于完成间隙的铜填充而不形成针孔如空隙的程度。 然后使用ECP来完成间隙的铜填充。 对晶片进行退火并进行CMP以平坦化表面,产生其中间隙被铜填充并由介电层分离的结构。
    • 76. 发明授权
    • Method to fabricate Ge and Si devices together for performance enhancement
    • 将Ge和Si器件制造在一起以提高性能的方法
    • US07202140B1
    • 2007-04-10
    • US11297540
    • 2005-12-07
    • Chew Hoe AngDong Kyun SohnLiang Choo Hsia
    • Chew Hoe AngDong Kyun SohnLiang Choo Hsia
    • H01L21/30
    • H01L27/0688H01L21/76256H01L21/8221H01L21/823807H01L2924/00011H01L2224/80001
    • A method for forming a semiconductor structure having devices formed on both sides. A first substrate and a second substrate are provided. The first substrate is preferably comprised of Ge. The second substrate is preferably comprised of silicon. We form a first dielectric layer over the first substrate. We form a first insulating layer over the second substrate. We bond the first dielectric layer and the first dielectric layer to form a first structure. The first structure comprised of the first substrate, an insulation layer (combined first dielectric and first insulating layers) and the second substrate. We reduce the thickness of the first substrate. We form via plugs through the first substrate and the insulation layer and at least partially through the second substrate. We form first active devices on the surface of the first substrate. We form a first capping layer over the first active devices and the first substrate. We reduce the thickness of the second substrate to expose the via plugs. We form second active devices on the second substrate.
    • 一种用于形成具有形成在两侧的器件的半导体结构的方法。 提供第一基板和第二基板。 第一衬底优选由Ge组成。 第二衬底优选由硅组成。 我们在第一衬底上形成第一电介质层。 我们在第二衬底上形成第一绝缘层。 我们键合第一介电层和第一介电层以形成第一结构。 第一结构包括第一基底,绝缘层(组合的第一介电层和第一绝缘层)和第二基底。 我们减少第一个基板的厚度。 我们通过插塞穿过第一基底和绝缘层形成,并且至少部分地穿过第二基底。 我们在第一衬底的表面上形成第一有源器件。 我们在第一有源器件和第一衬底上形成第一覆盖层。 我们减小第二基板的厚度以露出通孔塞。 我们在第二个基板上形成第二个有源器件。
    • 78. 发明授权
    • Method of forming a relaxed semiconductor buffer layer on a substrate with a large lattice mismatch
    • 在具有大晶格失配的衬底上形成松散半导体缓冲层的方法
    • US06995078B2
    • 2006-02-07
    • US10763305
    • 2004-01-23
    • Jin Ping LiuDong Kyun SohnLiang Choo Hsia
    • Jin Ping LiuDong Kyun SohnLiang Choo Hsia
    • H01L21/20H01L21/36
    • C30B29/52H01L21/02381H01L21/0245H01L21/02463H01L21/02502H01L21/0251H01L21/02532H01L21/02543H01L21/0262H01L29/1054Y10S438/933
    • A method of forming a relaxed silicon—germanium layer for use as an underlying layer for a subsequent overlying tensile strain silicon layer, has been developed. The method features initial growth of a underlying first silicon—germanium layer on a semiconductor substrate, compositionally graded to feature the largest germanium content at the interface of the first silicon—germanium layer and the semiconductor substrate, with the level of germanium decreasing as the growth of the graded first silicon—germanium layer progresses. This growth sequence allows the largest lattice mismatch and greatest level of threading dislocations to be present at the bottom of the graded silicon—germanium layer, with the magnitude of lattice mismatch and threading dislocations decreasing as the growth of the graded silicon—germanium layer progresses. In situ growth of an overlying silicon—germanium layer featuring uniform or non—graded germanium content, results in a relaxed silicon—germanium layer with a minimum of dislocations propagating from the underlying graded silicon—germanium layer. In situ growth of a silicon layer results in a tensile strain, low defect density layer to be used for MOSFET device applications.
    • 已经开发了形成用于随后的上覆拉伸应变硅层的下层的松弛硅 - 锗层的方法。 该方法的特征在于半导体衬底上的底层第一硅 - 锗层的初始生长,其组成分级以在第一硅 - 锗层和半导体衬底的界面处具有最大的锗含量,锗的含量随着生长 的分级第一硅锗层进行。 该生长序列允许最大的晶格失配和最高级别的穿透位错存在于渐变硅 - 锗层的底部,随着梯度硅 - 锗层的生长进行,晶格失配和穿透位错的大小减小。 具有均匀或非分级锗含量的上覆硅锗层的原位生长导致松弛的硅 - 锗层,其中最小的位错从下面的梯度硅 - 锗层传播。 硅层的原位生长导致用于MOSFET器件应用的拉伸应变,低缺陷密度层。