会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 74. 发明授权
    • Diffractive optical element, design method thereof and application thereof to solar cell
    • 衍射光学元件,其设计方法及其在太阳能电池中的应用
    • US09547181B2
    • 2017-01-17
    • US14355939
    • 2012-11-08
    • INSTITUTE OF PHYSICS, CHINESE ACADEMY OF SCIENCES
    • Guozhen YangBizhen DongYan ZhangJiasheng YeQingbo MengQingli HuangJinze Wang
    • G02B5/18G02B27/42G06F17/50H01L31/054G02B19/00G02B27/10G02B27/00
    • G02B27/4222G02B5/18G02B19/0042G02B27/0012G02B27/1086G02B27/4244G06F17/50H01L31/0549Y02E10/52
    • Disclosed are a diffractive optical element, a design method thereof and the application thereof in a solar cell. The design method for a design modulation thickness of a sampling point of the diffractive optical element comprises: calculating the modulation thickness of the current sampling point for each wavelength component; obtaining a series of alternative modulation thicknesses which are mutually equivalent for each modulation thickness, wherein a difference between the corresponding modulation phases is an integral multiple of 2π; and selecting one modulation thickness from the alternative modulation thicknesses of each wavelength to determine the design modulation thickness of the current sampling point. In an embodiment, the design method introduces a thickness optimization algorithm into a Yang-Gu algorithm. The design method breaks through limitations to the modulation thicknesses/modulation phases in the prior art and increases the diffraction efficiency, and the obtained diffractive optical element facilitates mass production by a modern photolithographic technique, which greatly reduces the cost. The diffractive optical element may also be applied to the solar cell, which provides an efficient and low-cost way for solar energy utilization.
    • 公开了衍射光学元件,其设计方法及其在太阳能电池中的应用。 衍射光学元件的采样点的设计调制厚度的设计方法包括:计算每个波长分量的当前采样点的调制厚度; 获得对于每个调制厚度相互等效的一系列备选调制厚度,其中相应调制相位之间的差为2π的整数倍; 并从每个波长的替代调制厚度中选择一个调制厚度,以确定当前采样点的设计调制厚度。 在一个实施例中,设计方法将厚度优化算法引入到杨古算法中。 该设计方法突破了现有技术中调制厚度/调制相位的限制,并提高了衍射效率,并且所获得的衍射光学元件有利于通过现代光刻技术大量生产,这大大降低了成本。 衍射光学元件也可以应用于太阳能电池,其为太阳能利用提供了有效和低成本的方式。
    • 76. 发明申请
    • DIFFRACTIVE OPTICAL ELEMENT, DESIGN METHOD THEREOF AND APPLICATION THEREOF TO SOLAR CELL
    • 衍射光学元件,其设计方法及其对太阳能电池的应用
    • US20140293422A1
    • 2014-10-02
    • US14355939
    • 2012-11-08
    • INSTITUTE OF PHYSICS, CHINESE ACADEMY OF SCIENCES
    • Guozhen YangBizhen DongYan ZhangJiasheng YeQingbo MengQingli HuangJinze Wang
    • G02B27/42G06F17/50
    • G02B27/4222G02B5/18G02B19/0042G02B27/0012G02B27/1086G02B27/4244G06F17/50H01L31/0549Y02E10/52
    • Disclosed are a diffractive optical element, a design method thereof and the application thereof in a solar cell. The design method for a design modulation thickness of a sampling point of the diffractive optical element comprises: calculating the modulation thickness of the current sampling point for each wavelength component; obtaining a series of alternative modulation thicknesses which are mutually equivalent for each modulation thickness, wherein a difference between the corresponding modulation phases is an integral multiple of 2π; and selecting one modulation thickness from the alternative modulation thicknesses of each wavelength to determine the design modulation thickness of the current sampling point. In an embodiment, the design method introduces a thickness optimization algorithm into a Yang-Gu algorithm. The design method breaks through limitations to the modulation thicknesses/modulation phases in the prior art and increases the diffraction efficiency, and the obtained diffractive optical element facilitates mass production by a modern photolithographic technique, which greatly reduces the cost. The diffractive optical element may also be applied to the solar cell, which provides an efficient and low-cost way for solar energy utilization.
    • 公开了衍射光学元件,其设计方法及其在太阳能电池中的应用。 衍射光学元件的采样点的设计调制厚度的设计方法包括:计算每个波长分量的当前采样点的调制厚度; 获得对于每个调制厚度相互等价的一系列备选调制厚度,其中相应调制相位之间的差是2& p的整数倍。 并从每个波长的替代调制厚度中选择一个调制厚度,以确定当前采样点的设计调制厚度。 在一个实施例中,设计方法将厚度优化算法引入到杨古算法中。 该设计方法突破了现有技术中调制厚度/调制相位的限制,并提高了衍射效率,并且所获得的衍射光学元件有利于通过现代光刻技术大量生产,这大大降低了成本。 衍射光学元件也可以应用于太阳能电池,其为太阳能利用提供了有效和低成本的方式。