会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 61. 发明授权
    • Non-planar MOSFET structures with asymmetric recessed source drains and methods for making the same
    • 具有非对称凹陷源漏极的非平面MOSFET结构及其制造方法
    • US08637371B2
    • 2014-01-28
    • US13398339
    • 2012-02-16
    • Josephine B ChangPaul ChangMichael A GuillornChung-hsun LinJeffrey W Sleight
    • Josephine B ChangPaul ChangMichael A GuillornChung-hsun LinJeffrey W Sleight
    • H01L21/336
    • H01L29/66545H01L29/0657H01L29/66795
    • Non-planar Metal Oxide Field Effect Transistors (MOSFETs) and methods for making non-planar MOSFETs with asymmetric, recessed source and drains having improved extrinsic resistance and fringing capacitance. The methods include a fin-last, replacement gate process to form the non-planar MOSFETs and employ a retrograde metal lift-off process to form the asymmetric source/drain recesses. The lift-off process creates one recess which is off-set from a gate structure while a second recess is aligned with the structure. Thus, source/drain asymmetry is achieved by the physical structure of the source/drains, and not merely by ion implantation. The resulting non-planar device has a first channel of a fin contacting a substantially undoped area on the drain side and a doped area on the source side, thus the first channel is asymmetric. A channel on atop surface of a fin is symmetric because it contacts doped areas on both the drain and source sides.
    • 非平面金属氧化物场效应晶体管(MOSFET)和用于制造具有改进的外在电阻和边缘电容的具有不对称,凹陷源极和漏极的非平面MOSFET的方法。 这些方法包括最后一个替代栅极工艺,以形成非平面MOSFET并且采用逆向金属剥离工艺来形成不对称的源极/漏极凹槽。 剥离过程产生一个从门结构偏离的凹槽,而第二凹槽与结构对准。 因此,源/漏不对称性通过源极/漏极的物理结构实现,而不仅仅是通过离子注入来实现。 所得到的非平面器件具有接触漏极侧的基本上未掺杂的区域和源极侧的掺杂区域的翅片的第一通道,因此第一通道是不对称的。 鳍的顶表面上的通道是对称的,因为它接触漏极和源极侧上的掺杂区域。
    • 62. 发明授权
    • Raised isolation structure self-aligned to fin structures
    • 升高的隔离结构自对准鳍结构
    • US08586449B1
    • 2013-11-19
    • US13603872
    • 2012-09-05
    • Josephine B. ChangPaul ChangMichael A. GuillornEffendi Leobandung
    • Josephine B. ChangPaul ChangMichael A. GuillornEffendi Leobandung
    • H01L21/76
    • H01L21/845H01L21/76229
    • Raised isolation structures can be formed at the same level as semiconductor fins over an insulator layer. A template material layer can be conformally deposited to fill the gaps among the semiconductor fins within each cluster of semiconductor fins on an insulator layer, while the space between adjacent clusters is not filled. After an anisotropic etch, discrete template material portions can be formed within each cluster region, while the buried insulator is physically exposed between cluster regions. A raised isolation dielectric layer is deposited and planarized to form raised isolation structures employing the template material portions as stopping structures. After removal of the template material portions, a cluster of semiconductor fins are located within a trench that is self-aligned to outer edges of the cluster of semiconductor fins. The trench can be employed to confine raised source/drain regions to be formed on the cluster of semiconductor fins.
    • 升高的隔离结构可以在与绝缘体层上的半导体鳍片相同的水平上形成。 可以共形沉积模板材料层以填充绝缘体层上的每个半导体翅片簇内的半导体鳍片之间的间隙,而相邻簇之间的空间未被填充。 在各向异性蚀刻之后,可以在每个簇区域内形成离散的模板材料部分,而埋入的绝缘体在簇区域之间物理暴露。 沉积并平坦化凸起的隔离介电层以形成采用模板材料部分作为停止结构的凸起隔离结构。 在去除模板材料部分之后,一组半导体鳍片位于与半导体鳍片簇的外边缘自对准的沟槽内。 沟槽可以用来限制要形成在半导体鳍片簇上的凸起的源极/漏极区域。
    • 68. 发明申请
    • COLLAPSABLE GATE FOR DEPOSITED NANOSTRUCTURES
    • 沉积式纳米结构的可收缩门
    • US20120326127A1
    • 2012-12-27
    • US13169542
    • 2011-06-27
    • Josephine B. ChangPaul ChangMichael A. GuillornPhilip S. Waggoner
    • Josephine B. ChangPaul ChangMichael A. GuillornPhilip S. Waggoner
    • H01L51/10H01L51/40
    • H01L29/66045H01L51/055
    • A disposable material layer is first deposited on a graphene layer or a carbon nanotube (CNT). The disposable material layer includes a material that is less inert than graphene or CNT so that a contiguous dielectric material layer can be deposited at a target dielectric thickness without pinholes therein. A gate stack is formed by patterning the contiguous dielectric material layer and a gate conductor layer deposited thereupon. The disposable material layer shields and protects the graphene layer or the CNT during formation of the gate stack. The disposable material layer is then removed by a selective etch, releasing a free-standing gate structure. The free-standing gate structure is collapsed onto the graphene layer or the CNT below at the end of the selective etch so that the bottom surface of the contiguous dielectric material layer contacts an upper surface of the graphene layer or the CNT.
    • 一次性材料层首先沉积在石墨烯层或碳纳米管(CNT)上。 一次性材料层包括比石墨烯或CNT更不惰性的材料,使得可以以目标电介质厚度沉积连续的电介质材料层而没有针孔。 通过图案化连续的介电材料层和沉积在其上的栅极导体层来形成栅极叠层。 一次性材料层在形成栅极叠层期间屏蔽并保护石墨烯层或CNT。 然后通过选择性蚀刻去除一次性材料层,释放独立的栅极结构。 独立栅极结构在选择性蚀刻结束时在石墨烯层或CNT上折叠,使得连续介电材料层的底表面接触石墨烯层或CNT的上表面。