会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 61. 发明授权
    • Automatic dust removal in digital images
    • 数字图像中自动除尘
    • US08351736B2
    • 2013-01-08
    • US12476514
    • 2009-06-02
    • Denis DemandolxEric Paul BennettAntonio CriminisiVladimir FarbmanSteven James White
    • Denis DemandolxEric Paul BennettAntonio CriminisiVladimir FarbmanSteven James White
    • G06K9/40G06T5/00
    • H04N5/3572H04N5/367H04N9/045
    • Methods and a processing device are provided for restoring pixels damaged by artifacts caused by dust, or other particles, entering a digital image capturing device. A user interface may be provided for a user to indicate an approximate location of an artifact appearing in a digital image. Dust attenuation may be estimated and an inverse transformation, based on the estimated dust attenuation, may be applied to damaged pixels in order to recover an estimate of the underlying digital image. One or many candidate source patch may be selected based on having smallest pixel distances, with respect to a target patch area. The damaged pixels included in the target patch area may be considered when calculating the pixel distance with respect to candidate source patches. RGB values of corresponding pixels of source patches may be used to restore the damaged pixels included in the target patch area.
    • 提供了方法和处理装置,用于恢复由于灰尘或其他颗粒引起的伪影所损坏的像素进入数字图像捕获装置。 可以为用户提供用户界面来指示出现在数字图像中的人造物的大致位置。 可以估计灰尘衰减,并且可以将基于估计的灰尘衰减的逆变换应用于损坏的像素,以便恢复底层数字图像的估计。 可以基于相对于目标贴片区域具有最小像素距离来选择一个或多个候选源贴片。 当计算相对于候选源贴片的像素距离时,可以考虑包括在目标贴片区域中的损伤像素。 可以使用源贴片的相应像素的RGB值来恢复包括在目标贴片区域中的损伤像素。
    • 62. 发明申请
    • Remote Workspace Sharing
    • 远程工作区共享
    • US20120162354A1
    • 2012-06-28
    • US13406235
    • 2012-02-27
    • Ankur AgarwalAntonio CriminisiWilliam BuxtonAndrew BlakeAndrew Fitzgibbon
    • Ankur AgarwalAntonio CriminisiWilliam BuxtonAndrew BlakeAndrew Fitzgibbon
    • H04N7/15
    • G06Q10/10H04N7/15
    • Existing remote workspace sharing systems are difficult to use. For example, changes made on a common work product by one user often appear abruptly on displays viewed by remote users. As a result the interaction is perceived as unnatural by the users and is often inefficient. Images of a display of a common work product are received from a camera at a first location. These images may also comprise information about objects between the display and the camera such as a user's hand editing a document on a tablet PC. These images are combined with images of the shared work product and displayed at remote locations. Advance information about remote user actions is then visible and facilitates collaborative mediation between users. Depth information may be used to influence the process of combining the images.
    • 现有的远程工作区共享系统很难使用。 例如,一个用户在公共工作产品上进行的更改通常会在远程用户查看的显示器上突然出现。 因此,互动被用户认为是不自然的,并且通常效率低下。 在第一位置从相机接收公共作品的显示的图像。 这些图像还可以包括关于显示器和相机之间的对象的信息,例如用户在平板PC上编辑文档的手。 这些图像与共享工作产品的图像组合,并在远程位置显示。 然后可以看到有关远程用户操作的高级信息,并促进用户之间的协作中介。 深度信息可以用于影响组合图像的过程。
    • 63. 发明授权
    • Remote workspace sharing
    • 远程工作区共享
    • US08125510B2
    • 2012-02-28
    • US11669107
    • 2007-01-30
    • Ankur AgarwalAntonio CriminisiBill BuxtonAndrew BlakeAndrew Fitzgibbon
    • Ankur AgarwalAntonio CriminisiBill BuxtonAndrew BlakeAndrew Fitzgibbon
    • H04N7/14
    • G06Q10/10H04N7/15
    • Existing remote workspace sharing systems are difficult to use. For example, changes made on a common work product by one user often appear abruptly on displays viewed by remote users. As a result the interaction is perceived as unnatural by the users and is often inefficient. Images of a display of a common work product are received from a camera at a first location. These images may also comprise information about objects between the display and the camera such as a user's hand editing a document on a tablet PC. These images are combined with images of the shared work product and displayed at remote locations. Advance information about remote user actions is then visible and facilitates collaborative mediation between users. Depth information may be used to influence the process of combining the images.
    • 现有的远程工作区共享系统很难使用。 例如,一个用户在公共工作产品上进行的更改通常会在远程用户查看的显示器上突然出现。 因此,互动被用户认为是不自然的,并且通常效率低下。 在第一位置从相机接收公共作品的显示的图像。 这些图像还可以包括关于显示器和相机之间的对象的信息,例如用户在平板PC上编辑文档的手。 这些图像与共享工作产品的图像组合,并在远程位置显示。 然后可以看到有关远程用户操作的高级信息,并促进用户之间的协作中介。 深度信息可以用于影响组合图像的过程。
    • 65. 发明申请
    • Medical Image Rendering
    • 医学影像呈现
    • US20110228997A1
    • 2011-09-22
    • US12725811
    • 2010-03-17
    • Toby SharpAntonio CriminisiKhan Mohammad Siddiqui
    • Toby SharpAntonio CriminisiKhan Mohammad Siddiqui
    • G06K9/62
    • G06T19/00G06T15/30G06T2200/24G06T2207/10081G06T2210/12G06T2219/004G06T2219/2012
    • Medical image rendering is described. In an embodiment a medical image visualization engine receives results from an organ recognition system which provide estimated organ centers, bounding boxes and organ classification labels for a given medical image. In examples the visualization engine uses the organ recognition system results to select appropriate transfer functions, bounding regions, clipping planes and camera locations in order to optimally view an organ. For example, a rendering engine uses the selections to render a two-dimensional image of medical diagnostic quality with minimal user input. In an embodiment a graphical user interface populates a list of organs detected in a medical image and a clinician is able to select one organ and immediately be presented with the optimal view of that organ. In an example opacity of background regions of the medical image may be adjusted to provide context for organs presented in a foreground region.
    • 描述医学图像呈现。 在一个实施例中,医学图像可视化引擎从提供给定医学图像的估计的器官中心,边界框和器官分类标签的器官识别系统接收结果。 在示例中,可视化引擎使用器官识别系统结果来选择适当的传递函数,边界区域,剪切平面和相机位置,以便最佳地观察器官。 例如,渲染引擎使用选择来以最小的用户输入呈现医学诊断质量的二维图像。 在一个实施例中,图形用户界面填充在医学图像中检测到的器官的列表,并且临床医生能够选择一个器官并且立即呈现该器官的最佳视图。 在示例性医学图像的背景区域的不透明度可以被调整以提供前景区域中呈现的器官的上下文。
    • 67. 发明申请
    • STEREO IMAGE SEGMENTATION
    • 立体图像分割
    • US20100220921A1
    • 2010-09-02
    • US12780857
    • 2010-05-14
    • Andrew BlakeAntonio CriminisiGeoffrey CrossVladimir KolmogorovCarsten Curt Eckard Rother
    • Andrew BlakeAntonio CriminisiGeoffrey CrossVladimir KolmogorovCarsten Curt Eckard Rother
    • G06K9/00
    • G06K9/00234G06K9/342G06K9/38G06K9/4652G06T7/11G06T7/162G06T7/194G06T2207/10021G06T2207/10024G06T2207/20072
    • Real-time segmentation of foreground from background layers in binocular video sequences may be provided by a segmentation process which may be based on one or more factors including likelihoods for stereo-matching, color, and optionally contrast, which may be fused to infer foreground and/or background layers accurately and efficiently. In one example, the stereo image may be segmented into foreground, background, and/or occluded regions using stereo disparities. The stereo-match likelihood may be fused with a contrast sensitive color model that is initialized or learned from training data. Segmentation may then be solved by an optimization algorithm such as dynamic programming or graph cut. In a second example, the stereo-match likelihood may be marginalized over foreground and background hypotheses, and fused with a contrast-sensitive color model that is initialized or learned from training data. Segmentation may then be solved by an optimization algorithm such as a binary graph cut.
    • 可以通过分割过程来提供来自双目视频序列中的背景层的前景的实时分割,分割过程可以基于一个或多个因素,包括立体匹配,颜色和可选对比的可能性,其可以融合到推断前景和 /或背景层准确高效。 在一个示例中,立体图像可以使用立体声差异被分割成前景,背景和/或遮挡区域。 立体匹配似然率可以与从训练数据初始化或学习的对比度敏感颜色模型融合。 然后可以通过诸如动态规划或图形切割的优化算法来解决分割。 在第二个例子中,立体匹配似然度在前景和背景假设上可能被边缘化,并且与从训练数据初始化或学习的对比度敏感颜色模型融合。 然后可以通过诸如二进制图切割的优化算法来解决分割。
    • 68. 发明授权
    • Stereo-based image processing
    • 立体声图像处理
    • US07512262B2
    • 2009-03-31
    • US11066946
    • 2005-02-25
    • Antonio CriminisiAndrew BlakeGeoffrey Cross
    • Antonio CriminisiAndrew BlakeGeoffrey Cross
    • G06K9/00
    • G06K9/00241
    • Images of the same scene from multiple cameras may be use to generate a stereo disparity map. At least a portion of the stereo disparity map may be compared to a kernel image to detect and/or determine the location of an object in the disparity map. The kernel image is an array of pixel values which represent the stereo disparity of an object to be located, more particularly, the kernel image indicates the 3-dimensional surface shape of the object to be located from a point of view. The disparity map containing the located object may be process to manipulate the display of the stereo-based image and/or an input image. For example, the display of the image may be cropped and/or zoomed, areas of the image that are not the located object may be modified, an object such as an emoticon or smart-emoticon may be virtually inserted into the three dimensions of the image and may interact with the object, the location of the object in the image may localize further searches, presence of the located object in the image may indicate selected storing of the image and/or image indexing, and/or the located object in the image may be used as a non-standard input device to a computing system.
    • 可以使用来自多个摄像机的相同场景的图像来生成立体视差图。 可以将立体视差图的至少一部分与核心图像进行比较,以检测和/或确定视差图中对象的位置。 内核图像是表示要被定位的对象的立体视差的像素值的阵列,更具体地说,内核图像表示从一个角度来定位的对象的三维表面形状。 包含定位对象的视差图可以是处理基于立体图像和/或输入图像的显示的处理。 例如,可以裁剪和/或缩放图像的显示,可以修改不是定位对象的图像区域,诸如表情符号或智能表情符号的对象可以被虚拟地插入到 图像并且可以与对象交互,图像中的对象的位置可以定位进一步的搜索,在图像中定位的对象的存在可以指示选择的图像和/或图像索引的存储和/或定位的对象在 图像可以用作计算系统的非标准输入设备。
    • 69. 发明授权
    • Virtual image artifact detection
    • 虚拟图像伪像检测
    • US07292735B2
    • 2007-11-06
    • US10826963
    • 2004-04-16
    • Andrew BlakeAntonio Criminisi
    • Andrew BlakeAntonio Criminisi
    • G06K9/36G06K9/00G06K9/40H04N1/409G06T5/00
    • G06T5/005G06K9/03G06K9/20G06K2209/40G06T7/97G06T2207/10012G06T2207/10024H04N7/157H04N13/10
    • Artifacts are detected in a cyclopean virtual image generated from stereo images. A disparity map is generated from the stereo images. Individual projected images are determined based on the disparity map and the corresponding stereo images. A difference map is computed between the individual projected images to indicate the artifacts. A source patch in the virtual image is defined relative to an artifact. A replacement target patch is generated using a split-patch search technique as a composite of a background exemplar patch and a foreground exemplar patch. Each exemplar patch may be identified from an image patch selected from at least one of the stereo images. The source patch of the virtual image is replaced by the replacement target patch to correct the detected artifact.
    • 在从立体图像生成的环形虚拟图像中检测人造物。 从立体图像生成视差图。 基于视差图和对应的立体图像确定个体投影图像。 在各个投影图像之间计算差异图,以指示伪像。 虚拟映像中的源补丁是相对于工件定义的。 使用分割补丁搜索技术来生成替换目标补丁作为背景示例补丁和前景示例补丁的组合。 可以从选自至少一个立体图像的图像补丁来识别每个示例性补丁。 虚拟映像的源修补程序将替换为替换目标修补程序,以更正检测到的伪像。
    • 70. 发明授权
    • Density estimation and/or manifold learning
    • 密度估计和/或歧管学习
    • US08954365B2
    • 2015-02-10
    • US13528866
    • 2012-06-21
    • Antonio CriminisiJamie Daniel Joseph ShottonEnder Konukoglu
    • Antonio CriminisiJamie Daniel Joseph ShottonEnder Konukoglu
    • G06F17/00G06K9/62
    • G06K9/6232G06K9/6219G06K9/6226G06K9/6252
    • Density estimation and/or manifold learning are described, for example, for computer vision, medical image analysis, text document clustering. In various embodiments a density forest is trained using unlabeled data to estimate the data distribution. In embodiments the density forest comprises a plurality of random decision trees each accumulating portions of the training data into clusters at their leaves. In embodiments probability distributions representing the clusters at each tree are aggregated to form a forest density which is an estimate of a probability density function from which the unlabeled data may be generated. A mapping engine may use the clusters at the leaves of the density forest to estimate a mapping function which maps the unlabeled data to a lower dimensional space whilst preserving relative distances or other relationships between the unlabeled data points. A sampling engine may use the density forest to randomly sample data from the forest density.
    • 例如,对于计算机视觉,医学图像分析,文本文档聚类来描述密度估计和/或歧管学习。 在各种实施例中,使用未标记的数据来训练密度森林以估计数据分布。 在实施例中,密度森林包括多个随机决策树,每个随机决策树将训练数据的部分在其叶片上聚集成簇。 在实施例中,表示每个树上的聚类的概率分布被聚合以形成森林密度,森林密度是可以从其生成未标记数据的概率密度函数的估计。 映射引擎可以使用密度森林叶片处的簇来估计将未标记数据映射到较低维空间的映射函数,同时保留未标记数据点之间的相对距离或其他关系。 采样引擎可以使用密度森林来从森林密度随机抽取数据。