会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 61. 发明授权
    • Density estimation and/or manifold learning
    • 密度估计和/或歧管学习
    • US08954365B2
    • 2015-02-10
    • US13528866
    • 2012-06-21
    • Antonio CriminisiJamie Daniel Joseph ShottonEnder Konukoglu
    • Antonio CriminisiJamie Daniel Joseph ShottonEnder Konukoglu
    • G06F17/00G06K9/62
    • G06K9/6232G06K9/6219G06K9/6226G06K9/6252
    • Density estimation and/or manifold learning are described, for example, for computer vision, medical image analysis, text document clustering. In various embodiments a density forest is trained using unlabeled data to estimate the data distribution. In embodiments the density forest comprises a plurality of random decision trees each accumulating portions of the training data into clusters at their leaves. In embodiments probability distributions representing the clusters at each tree are aggregated to form a forest density which is an estimate of a probability density function from which the unlabeled data may be generated. A mapping engine may use the clusters at the leaves of the density forest to estimate a mapping function which maps the unlabeled data to a lower dimensional space whilst preserving relative distances or other relationships between the unlabeled data points. A sampling engine may use the density forest to randomly sample data from the forest density.
    • 例如,对于计算机视觉,医学图像分析,文本文档聚类来描述密度估计和/或歧管学习。 在各种实施例中,使用未标记的数据来训练密度森林以估计数据分布。 在实施例中,密度森林包括多个随机决策树,每个随机决策树将训练数据的部分在其叶片上聚集成簇。 在实施例中,表示每个树上的聚类的概率分布被聚合以形成森林密度,森林密度是可以从其生成未标记数据的概率密度函数的估计。 映射引擎可以使用密度森林叶片处的簇来估计将未标记数据映射到较低维空间的映射函数,同时保留未标记数据点之间的相对距离或其他关系。 采样引擎可以使用密度森林来从森林密度随机抽取数据。
    • 63. 发明申请
    • DENSITY ESTIMATION AND/OR MANIFOLD LEARNING
    • 密度估算和/或差异学习
    • US20130343619A1
    • 2013-12-26
    • US13528866
    • 2012-06-21
    • Antonio CriminisiJamie Daniel Joseph ShottonEnder Konukoglu
    • Antonio CriminisiJamie Daniel Joseph ShottonEnder Konukoglu
    • G06K9/62
    • G06K9/6232G06K9/6219G06K9/6226G06K9/6252
    • Density estimation and/or manifold learning are described, for example, for computer vision, medical image analysis, text document clustering. In various embodiments a density forest is trained using unlabeled data to estimate the data distribution. In embodiments the density forest comprises a plurality of random decision trees each accumulating portions of the training data into clusters at their leaves. In embodiments probability distributions representing the clusters at each tree are aggregated to form a forest density which is an estimate of a probability density function from which the unlabeled data may be generated. A mapping engine may use the clusters at the leaves of the density forest to estimate a mapping function which maps the unlabeled data to a lower dimensional space whilst preserving relative distances or other relationships between the unlabeled data points. A sampling engine may use the density forest to randomly sample data from the forest density.
    • 例如,对于计算机视觉,医学图像分析,文本文档聚类来描述密度估计和/或歧管学习。 在各种实施例中,使用未标记的数据来训练密度森林以估计数据分布。 在实施例中,密度森林包括多个随机决策树,每个随机决策树将训练数据的部分在其叶片上累积成簇。 在实施例中,表示每个树上的聚类的概率分布被聚合以形成森林密度,森林密度是可以从其生成未标记数据的概率密度函数的估计。 映射引擎可以使用密度森林叶片处的簇来估计将未标记数据映射到较低维空间的映射函数,同时保留未标记数据点之间的相对距离或其他关系。 采样引擎可以使用密度森林来从森林密度随机抽取数据。
    • 64. 发明授权
    • Image editing consistent with scene geometry
    • 图像编辑与场景几何相一致
    • US08436852B2
    • 2013-05-07
    • US12367675
    • 2009-02-09
    • Antonio CriminisiCarsten RotherGavin SmythAmit Shesh
    • Antonio CriminisiCarsten RotherGavin SmythAmit Shesh
    • G06T15/00
    • G06T15/20G06T19/20G06T2200/24
    • Image editing which is consistent with geometry of a scene depicted in the image is described. In an embodiment a graphical user interface (GUI) is provided to enable a user to simply and quickly specify four corners of a rectangular frame drawn onto a source image using the GUI. In embodiments, the four corners are used to compute parameters of a virtual camera assumed to capture the image of the drawn frame. Embodiments of an image processing system are described which use the virtual camera parameters to control editing of the source image in ways consistent with the 3D geometry of the scene depicted in that image. In some embodiments out of bounds images are formed and/or realistic-looking shadows are synthesized. In examples, users are able to edit images and the virtual camera parameters are dynamically recomputed and used to update the edited image.
    • 描述与图像中描绘的场景的几何图形一致的图像编辑。 在一个实施例中,提供图形用户界面(GUI)以使用户能够使用GUI简单快速地指定绘制到源图像上的矩形框架的四个角。 在实施例中,四个角用于计算假定捕获所绘制的帧的图像的虚拟相机的参数。 描述了图像处理系统的实施例,其使用虚拟相机参数来以与该图像中描绘的场景的3D几何形状一致的方式来控制源图像的编辑。 在一些实施例中,形成图像外的图像和/或逼真的阴影被合成。 在示例中,用户能够编辑图像,虚拟相机参数被动态重新计算并用于更新编辑的图像。
    • 68. 发明授权
    • Object recognition using textons and shape filters
    • 使用纹理和形状过滤器的对象识别
    • US07840059B2
    • 2010-11-23
    • US11534019
    • 2006-09-21
    • John WinnCarsten RotherAntonio CriminisiJamie Shotton
    • John WinnCarsten RotherAntonio CriminisiJamie Shotton
    • G06K9/62
    • G06K9/3233G06K9/4604
    • Given an image of structured and/or unstructured objects we automatically partition it into semantically meaningful areas each labeled with a specific object class. We use a novel type of feature which we refer to as a shape filter. Shape filters enable us to capture some or all of shape, texture and appearance context information. A shape filter comprises one or more regions of arbitrary shape, size and position within a bounding area of an image, paired with a specified texton. A texton comprises information describing the texture of a patch of surface of an object. In a training process we select a sub-set of possible shape filters and incorporate those into a conditional random field model of object classes. That model is then used for object detection and recognition.
    • 给定结构化和/或非结构化对象的图像,我们自动将其划分为语义有意义的区域,每个区域都标有特定的对象类。 我们使用一种我们称为形状滤波器的新型特征。 形状过滤器使我们能够捕获部分或全部形状,纹理和外观上下文信息。 形状滤波器包括在图像的边界区域内的任意形状,大小和位置的一个或多个区域,与指定的文本配对。 文本包括描述对象的表面的纹理的信息。 在训练过程中,我们选择可能的形状过滤器的子集,并将其合并到对象类的条件随机场模型中。 然后将该模型用于对象检测和识别。
    • 69. 发明申请
    • Image Editing Consistent with Scene Geometry
    • 图像编辑与场景几何一致
    • US20100201681A1
    • 2010-08-12
    • US12367675
    • 2009-02-09
    • Antonio CriminisiCarsten RotherGavin SmythAmit Shesh
    • Antonio CriminisiCarsten RotherGavin SmythAmit Shesh
    • G06T15/00G09G5/00
    • G06T15/20G06T19/20G06T2200/24
    • Image editing which is consistent with geometry of a scene depicted in the image is described. In an embodiment a graphical user interface (GUI) is provided to enable a user to simply and quickly specify four corners of a rectangular frame drawn onto a source image using the GUI. In embodiments, the four corners are used to compute parameters of a virtual camera assumed to capture the image of the drawn frame. Embodiments of an image processing system are described which use the virtual camera parameters to control editing of the source image in ways consistent with the 3D geometry of the scene depicted in that image. In some embodiments out of bounds images are formed and/or realistic-looking shadows are synthesized. In examples, users are able to edit images and the virtual camera parameters are dynamically recomputed and used to update the edited image.
    • 描述与图像中描绘的场景的几何图形一致的图像编辑。 在一个实施例中,提供图形用户界面(GUI)以使用户能够使用GUI简单快速地指定绘制到源图像上的矩形框架的四个角。 在实施例中,四个角用于计算假定捕获所绘制的帧的图像的虚拟相机的参数。 描述了图像处理系统的实施例,其使用虚拟相机参数来以与该图像中描绘的场景的3D几何形状一致的方式来控制源图像的编辑。 在一些实施例中,形成图像外的图像和/或逼真的阴影被合成。 在示例中,用户能够编辑图像,虚拟相机参数被动态重新计算并用于更新编辑的图像。