会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 51. 发明授权
    • High-performance propeller
    • 高性能螺旋桨
    • US06866482B2
    • 2005-03-15
    • US10204984
    • 2001-02-05
    • Wei HanYuanling LiLianyun Sun
    • Wei HanYuanling LiLianyun Sun
    • B63H1/26B63H1/16B63H1/28B64C11/00B64C11/18F04D29/38F04D29/18
    • B63H1/28B63H1/16B64C11/001B64C11/18F04D29/384
    • A high-performance propeller has one hub and a plurality of blades, characterized in that a double-side or a single-side arc brim is provided at the tip of each blade. The propeller of the invention can provide a small induced drag and convert the centrifugal force to the effective force so as is to increase the differential pressure near the tip of blades and thereby increase the acting force on blades. Under the condition of same power consumption, it has been tested for the large propeller in the type of lateral inclination that the amount of flow is increased about 12%˜17%, which is equivalent to save energy 40%˜70%. Since the fluid dynamic performance presents the aspect ratio approaching infinity, the width of the blades can be increased whereas the induced drag is not increased. Applying the method of increasing the area of the blades and decreasing the velocity of outflow fluid, the effect on saving of energy can be further improved greatly on the present basis.
    • 高性能螺旋桨具有一个轮毂和多个叶片,其特征在于,在每个叶片的尖端处设置双面或单侧弧形边缘。 本发明的螺旋桨可以提供小的诱导阻力并将离心力转换成有效力,以便增加叶片尖端附近的差压,从而增加对叶片的作用力。 在同等功耗的条件下,已经对横向倾斜型大型螺旋桨进行了测试,流量增加了约12%〜17%,相当于节能40%〜70%。 由于流体动力学性能使纵横比接近无穷大,所以叶片的宽度可以增加,而感应阻力不增加。 应用增加叶片面积和降低流出液速度的方法,在现有的基础上,可以大大提高对节能的效果。
    • 54. 发明授权
    • Method of fluid rheology characterization and apparatus therefor
    • 流体流变学表征方法及其设备
    • US06378357B1
    • 2002-04-30
    • US09524976
    • 2000-03-14
    • Wei HanJohn W. MinearRonnie G. MorganJames R. Birchak
    • Wei HanJohn W. MinearRonnie G. MorganJames R. Birchak
    • G01N1100
    • G01N29/345G01F1/663G01N11/16G01N29/036G01N29/343G01N29/38G01N2011/0073G01N2291/017G01N2291/02818G01N2291/02836G01N2291/102
    • There is disclosed herein a method and apparatus that use ultrasonic signals to measure rheological properties of a fluid flow such as, e.g., the consistency index K, the flow behavior index n′, the yield stress &tgr;0, or other parameters of any given model for shear rate dependent viscosity &eegr;. In one embodiment, the method includes: (a) transmitting an acoustic signal into the fluid flow; (b) receiving acoustic reflections from acoustic reflectors entrained in the fluid flow; (c) determining a Doppler shift of the acoustic reflections in a set of time windows corresponding to a set of desired sampling regions in the fluid flow; and (d) analyzing the Doppler shifts associated with the set of sampling regions to determine one or more rheological properties of the fluid flow. The frequency shift caused by motion of the fluid is proportional to the velocity of the fluid, and this allows the construction of a velocity profile of the fluid flow stream. The velocity profile can be normalized and “matched” to one of a family of velocity profile templates, and the rheological properties identified by the curve that matches best. Alternatively, the shear rate as a function of shear stress can be calculated from the measurements, and these values may be used to find each of the parameters directly. In one embodiment, the apparatus includes a transmitter, a receiver, and an electronic module. The transmitter transmits an acoustic signal into the fluid flow. The receiver receives reflections of the acoustic signal from entrained acoustic reflection sources in the fluid flow. The electronic module is coupled to the transmitter and receiver, and is configured to provide a pulsed high frequency signal to the transmitter and, responsive to the signal from the receiver, to determine a velocity vs. position profile of the fluid flow.
    • 这里公开了一种方法和装置,其使用超声信号来测量流体流动的流变特性,例如一致性指数K,流动行为指数n',屈服应力< 0或任何给定的其他参数 剪切速率依赖粘度等级模型 在一个实施例中,该方法包括:(a)将声信号传输到流体流中; (b)从夹带在流体流中的声反射器接收声反射; (c)确定在一组对应于所述流体流中期望的采样区域的时间窗口中的声反射的多普勒频移; 以及(d)分析与该组采样区域相关联的多普勒频移,以确定流体流动的一个或多个流变特性。 由流体运动引起的频率偏移与流体的速度成比例,这允许构建流体流动流的速度分布。 速度分布可以归一化,并与一系列速度分布模板中的一个进行归一化,并且通过曲线确定的最佳匹配的流变特性。 或者,可以从测量中计算作为剪切应力的函数的剪切速率,并且可以使用这些值来直接找到每个参数。 在一个实施例中,该装置包括发射器,接收器和电子模块。 发射器将声信号发送到流体流中。 接收器接收来自流体流中夹带的声反射源的声信号的反射。 电子模块耦合到发射器和接收器,并且被配置为向发射器提供脉冲高频信号,并且响应于来自接收器的信号来确定流体流的速度与位置分布。
    • 59. 发明申请
    • Acoustic Standoff and Mud Velocity Using a Stepped Transmitter
    • 使用步进式变送器的声学分离和泥浆速度
    • US20140247694A1
    • 2014-09-04
    • US14278839
    • 2014-05-15
    • Rocco DiFoggioWei Han
    • Rocco DiFoggioWei Han
    • G01V1/44
    • E21B47/101G01F23/247G01F23/2961G01N29/024G01N29/028G01N29/4418G01N2291/02818G01N2291/02836G01N2291/045G01V1/50
    • A system, apparatus and method for determining an acoustic property of a fluid in a wellbore is disclosed. A faceplate is placed in the wellbore with a stepped surface of the faceplate in contact with the fluid. The stepped surface includes a non-stepped face and a stepped face. A first portion of an acoustic pulse passes from the faceplate into the fluid via the non-stepped face and a second portion of the acoustic pulse passes from the faceplate into the fluid via the stepped face. A first reflected acoustic pulse related to the first portion of the acoustic pulse is received. A second reflected acoustic pulse related to the second portion of the acoustic pulse is received. A measurement of the first reflected acoustic pulse and a measurement of the second reflected pulse are used to determine the acoustic property of the fluid in the wellbore.
    • 公开了一种用于确定井眼中的流体的声学特性的系统,装置和方法。 面板放置在井眼中,面板与流体接触的台阶表面。 阶梯面包括非阶梯面和阶梯面。 声脉冲的第一部分经由非阶梯面从面板传送到流体中,并且声脉冲的第二部分经由台阶面从面板流入流体。 接收与声脉冲的第一部分相关的第一反射声脉冲。 接收与声脉冲的第二部分有关的第二反射声脉冲。 使用第一反射声脉冲的测量和第二反射脉冲的测量来确定井眼中的流体的声学特性。