会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 54. 发明授权
    • Intake air flow rate control device for internal combustion engine
    • 内燃机进气流量控制装置
    • US08688355B2
    • 2014-04-01
    • US13394244
    • 2010-11-02
    • Masakazu YamamotoShinichi SoejimaNaoto Kato
    • Masakazu YamamotoShinichi SoejimaNaoto Kato
    • F02D41/04F02D11/10F02D9/02
    • F02D41/0002F02D9/105F02D11/105F02D41/045F02D2009/0235F02D2009/0294F02D2041/1431F02D2041/1434Y02T10/42
    • A required intake air flow rate is converted to a post-model required intake air flow rate (BMtsm) by a base-system normative model, and the inverse model of an intake system model is used to calculate a base-system required throttle opening degree (BTA) so as to achieve the post-model required intake air flow rate (BMtsm). On the other hand, the required in-take air flow rate (Mt) is converted to a post-model required intake air flow rate (HMtsm) by a high-response-system normative model, and the inverse model of the intake system model is used to calculate a high-response-system required throttle opening degree (HTA) so as to achieve the post-model required intake air flow rate (HMTsm). Then, a target throttle opening degree (TAt) is set so as to fall within the range from the base-system required throttle opening degree (BTA) to the high-response-system required throttle opening degree (HTA) and the reduce a variation amount.
    • 通过基础系统规范模型将所需的进气流量转换成后模型所需的进气流量(BMtsm),并且使用进气系统模型的逆模型来计算基座系统所需的节气门开度 (BTA),以实现后模型所需的进气流量(BMtsm)。 另一方面,所需的吸入空气流量(Mt)通过高响应系统规范模型转换成后模型所需的进气流量(HMtsm),进气系统模型的逆模型 用于计算高响应系统所需的节气门开度(HTA),以达到后模型所需进气流量(HMTsm)。 然后,将目标节气门开度(TAt)设定为从基础系统所需的节气门开度(BTA)到高响应系统所需的节气门开度(HTA)的范围内,并且减小变化 量。
    • 56. 发明申请
    • VEHICLE CONTROL APPARATUS
    • 车辆控制装置
    • US20110082629A1
    • 2011-04-07
    • US12672376
    • 2009-01-26
    • Shinichi SoejimaNaoto KatoKiyonori Takahashi
    • Shinichi SoejimaNaoto KatoKiyonori Takahashi
    • B60W10/10B60W30/18B60W10/06F16H59/74
    • F02P5/1521F02D41/1497F02P5/14F02P5/1504Y02T10/46
    • In a vehicle control apparatus controlling a vehicle operating state by using a torque generated by an internal combustion engine, an arrangement is made to inhibit fuel efficiency from being aggravated as a result of ignition timing of the internal combustion engine being retarded.The vehicle control apparatus includes a drive system control unit that comprehensively controls a drive system of the vehicle and an engine control unit that controls the internal combustion engine based on demanded torque issued from the drive system control unit. The engine control unit adjusts an amount of intake air based on the demanded torque and adjusts ignition timing so as to compensate for any deviation between torque achievable through an adjustment of the amount of intake air and the demanded torque. The drive system control unit calculates desirable torque to be desirably output to the internal combustion engine for achieving a target operating state of the vehicle based on an accelerator operation amount by a driver or signals from various types of sensors mounted on the vehicle. The drive system control unit limits a change rate of the desirable torque by using a predetermined guard value determined from torque adjustment capacity of the internal combustion engine and outputs the desirable torque after the limiting as the demanded torque to the engine control unit. The guard value is set with reference to a range of the change rate of torque achievable through the adjustment of the amount of intake air in the internal combustion engine.
    • 在通过使用由内燃机产生的转矩来控制车辆运行状态的车辆控制装置中,由于内燃机的点火正时延迟而使得燃料效率不被加重, 车辆控制装置包括:综合地控制车辆的驱动系统的驱动系统控制单元和根据从驱动系统控制单元发出的要求转矩来控制内燃机的发动机控制单元。 发动机控制单元根据要求的转矩来调节进气量,并调整点火正时,以补偿通过调整进气量和所需转矩可实现的扭矩之间的任何偏差。 驱动系统控制单元基于来自驾驶员的加速器操作量或者安装在车辆上的各种类型的传感器的信号来计算期望地输出到内燃机的期望扭矩以实现车辆的目标操作状态。 驱动系统控制单元通过使用从内燃机的转矩调整能力确定的预定保护值来限制期望转矩的变化率,并且将限制后的期望转矩作为对发动机控制单元的要求转矩输出。 参考通过调节内燃机中的进气量可实现的扭矩的变化率的范围来设定防护值。
    • 60. 发明申请
    • Air-Fuel-Ratio Control Apparatus for Internal Combustion Engine
    • 内燃机空燃比控制装置
    • US20090138172A1
    • 2009-05-28
    • US11991951
    • 2006-11-13
    • Shuntaro OkazakiNaoto Kato
    • Shuntaro OkazakiNaoto Kato
    • F02D41/30
    • F02D41/1456F01N3/101F01N13/009F01N13/0093F01N2560/025F02D41/1441F02D41/1483F02D41/1487F02D2041/1409Y02A50/2324Y02T10/22
    • The air-fuel-ratio control apparatus for an internal combustion engine obtains a composite air-fuel ratio abyfs from a downstream-side correction value Vafsfb(k) based upon an output value Voxs from a downstream air-fuel-ratio sensor 67 and an output value Vabyfs from an upstream air-fuel-ratio sensor 66, and obtains an upstream-side feedback correction value DFi on the basis of the composite air-fuel ratio abyfs. A fuel injection quantity Fi is determined to a value obtained by adding the upstream-side correction value DFi to a control-use base fuel injection quantity Fbasec (=base fuel injection quantity Fbase·coefficient Ksub). The coefficient Ksub is determined on the basis of the downstream-side feedback correction value Vafsfb(k) in such a manner that the control-use base fuel injection quantity Fbasec (accordingly, the fuel injection quantity Fi) is determined such that the output value Vabyfs from the upstream air-fuel-ratio sensor 66 changes in the direction of canceling the change in the downstream-side feedback correction value Vafsfb(k).
    • 用于内燃机的空燃比控制装置根据来自下游空燃比传感器67的输出值Voxs和下游侧空燃比传感器67的输出值Voxs,从下游侧校正值Vafsfb(k)获得复合空燃比abyfs 从上游空燃比传感器66输出的输出值Vabyfs,基于复合空燃比abyfs求出上游侧反馈修正值DFi。 燃料喷射量Fi被确定为通过将上游侧校正值DFi加到控制用基础燃料喷射量Fbasec(=基础燃料喷射量Fbase系数Ksub)而获得的值。 基于下游侧反馈校正值Vafsfb(k)来确定系数Ksub,使得控制用基础燃料喷射量Fbasec(相应地,燃料喷射量Fi)被确定为使得输出值 来自上游空燃比传感器66的Vabyfs在抵消下游侧反馈校正值Vafsfb(k)的变化的方向上变化。