会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 51. 发明授权
    • MgO-based tunnel spin injectors
    • 基于MgO的隧道旋转注射器
    • US07274080B1
    • 2007-09-25
    • US10969735
    • 2004-10-19
    • Stuart Stephen Papworth Parkin
    • Stuart Stephen Papworth Parkin
    • H01L21/00H01L29/82
    • H01L29/66984Y10S977/933
    • A MgO tunnel barrier is sandwiched between semiconductor material on one side and a ferri- and/or ferromagnetic material on the other side to form a spintronic element. The semiconductor material may include GaAs, for example. The spintronic element may be used as a spin injection device by injecting charge carriers from the magnetic material into the MgO tunnel barrier and then into the semiconductor. Similarly, the spintronic element may be used as a detector or analyzer of spin-polarized charge carriers by flowing charge carriers from the surface of the semiconducting layer through the MgO tunnel barrier and into the (ferri- or ferro-) magnetic material, which then acts as a detector. The MgO tunnel barrier is preferably formed by forming a Mg layer on an underlayer (e.g., a ferromagnetic layer), and then directing additional Mg, in the presence of oxygen, towards the underlayer.
    • MgO隧道势垒夹在一侧的半导体材料和另一侧的铁和/或铁磁材料之间以形成自旋电子元件。 半导体材料可以包括例如GaAs。 自旋电子元件可以通过将电荷载体从磁性材料注入到MgO隧道势垒中,然后进入半导体中而用作自旋注入装置。 类似地,自旋电子元件可以用作自旋极化电荷载流子的检测器或分析器,这是通过将载流子从半导体层的表面流过MgO隧道屏障并进入(铁或铁)磁性材料 作为检测器。 MgO隧道势垒优选通过在底层(例如铁磁性层)上形成Mg层,然后在氧的存在下将另外的Mg引向底层来形成。
    • 54. 发明授权
    • Magnetic tunnel junction device with improved fixed and free
ferromagnetic layers
    • 具有改进的固定和自由铁磁层的磁隧道结装置
    • US5966012A
    • 1999-10-12
    • US947282
    • 1997-10-07
    • Stuart Stephen Papworth Parkin
    • Stuart Stephen Papworth Parkin
    • G11B5/39G11C11/15G11C11/16H01F10/32H01L43/08G01R33/02
    • H01L43/08B82Y25/00G11B5/3909G11C11/15G11C11/16H01F10/3254H01F10/3268H01F10/3295
    • An improved magnetic tunnel junction (MTJ) device for use in a magnetic recording read head or in a magnetic memory storage cell is comprised of two ferromagnetic layers, a "hard" or "fixed" ferromagnetic layer and a sensing or "free" ferromagnetic layer, which are separated by a thin insulating tunneling layer. Each of the ferromagnetic layers is a multilayer formed from two thinner ferromagnetic films coupled antiferromagnetically to one another across a thin antiferromagnetically coupling film. The antiferromagnetically coupling film is chosen, with regard to material composition and thickness, so that it causes the two ferromagnetic films which sandwich it to have their magnetic moments arranged antiparallel to one other in the absence of external magnetic fields. The magnetic moments of the fixed ferromagnetic multilayer and free ferromagnetic layer can be chosen to be arbitrarily small by making the two ferromagnetic films comprising each of them to have substantially the same magnetic moment. Thus the dipole fields from each of the fixed and free ferromagnetic multilayers can be minimized, thereby reducing the magnetic interaction between the fixed ferromagnetic multilayer and the free ferromagnetic multilayer.
    • 用于磁记录读取头或磁存储器存储单元的改进的磁隧道结(MTJ)装置由两个铁磁层,“硬”或“固定”铁磁层和感测或“自由”铁磁层 ,它们被薄的绝缘隧道层分开。 每个铁磁层是由两个较薄的铁磁膜形成的多层,其通过薄的反铁磁耦合膜彼此反铁磁耦合。 选择反铁磁耦合膜,关于材料组成和厚度,使得它使夹着它的两个铁磁膜在没有外部磁场的情况下使它们的磁矩反向平行布置。 通过使包含它们中的每一个的两个铁磁膜具有基本上相同的磁矩,可以选择固定铁磁多层和自由铁磁层的磁矩任意小。 因此,可以使来自固定和自由铁磁多层膜的偶极场最小化,从而减少固定铁磁性多层和自由铁磁性多层之间的磁相互作用。