会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 51. 发明授权
    • Modeling reflections within an image sequence
    • 建模图像序列中的反射
    • US07750903B2
    • 2010-07-06
    • US11534647
    • 2006-09-23
    • Nebojsa JojicBrendan J. Frey
    • Nebojsa JojicBrendan J. Frey
    • G06T17/00
    • G06T7/215G06T2207/10016G06T2207/30196
    • A simplified general model and an associated estimation algorithm is provided for modeling visual data such as a video sequence. Specifically, images or frames in a video sequence are represented as collections of flat moving objects that change their appearance and shape over time, and can occlude each other over time. A statistical generative model is defined for generating such visual data where parameters such as appearance bit maps and noise, shape bit-maps and variability in shape, etc., are known. Further, when unknown, these parameters are estimated from visual data without prior pre-processing by using a maximization algorithm. By parameter estimation and inference in the model, visual data is segmented into components which facilitates sophisticated applications in video or image editing, such as, for example, object removal or insertion, tracking and visual surveillance, video browsing, photo organization, video compositing, etc.
    • 提供了简化的一般模型和相关联的估计算法用于对诸如视频序列的视觉数据进行建模。 具体来说,视频序列中的图像或帧被表示为随时间改变其外观和形状的平坦移动对象的集合,并且可以随着时间而彼此闭塞。 定义了统计生成模型,用于生成这样的视觉数据,其中诸如出现位图和噪声,形状位图和形状变异等参数是已知的。 此外,当未知时,这些参数是通过使用最大化算法从视觉数据估计而没有预先预处理的。 通过模型中的参数估计和推理,视觉数据被分割成有助于视频或图像编辑中的复杂应用的组件,例如对象去除或插入,跟踪和视觉监视,视频浏览,照片组织,视频合成, 等等
    • 52. 发明授权
    • Program verification and discovery using probabilistic inference
    • 使用概率推理的程序验证和发现
    • US07729999B2
    • 2010-06-01
    • US11622904
    • 2007-01-12
    • Sumit GulwaniVladimir JojicNebojsa Jojic
    • Sumit GulwaniVladimir JojicNebojsa Jojic
    • G06F15/18
    • G06F11/3608
    • In one embodiment, a computer system performs a method for verifying the validity or invalidity of a software routine by learning appropriate invariants at each program point. A computer system chooses an abstract domain that is sufficiently precise to express the appropriate invariants. The computer system associates an inconsistency measure with any two abstract elements of the abstract domain. The computer system searches for a set of local invariants configured to optimize a total inconsistency measure which includes a sum of local inconsistency measures. The computer system optimizes the total inconsistency measure for all input/output pairs of the software routine. In one embodiment, the optimization of total inconsistency is achieved by the computer system which repeatedly replaces a locally inconsistent invariant with a new invariant, randomly selected among the possible invariants which are locally less inconsistent with the current invariants at the neighboring program points.
    • 在一个实施例中,计算机系统通过在每个程序点学习适当的不变量来执行用于验证软件例程的有效性或无效性的方法。 计算机系统选择足够精确的表示适当不变量的抽象域。 计算机系统将不一致性度量与抽象域的任意两个抽象元素相关联。 计算机系统搜索一组局部不变量,其被配置为优化包括本地不一致性度量的总和的总不一致性度量。 计算机系统优化软件程序的所有输入/输出对的总不一致性测量。 在一个实施例中,总体不一致性的优化是通过计算机系统实现的,该计算机系统在局部地与邻近程序点的当前不变量局部较不一致的可能不变量中随机选择新的不变量来重复地替换局部不一致的不变量。
    • 53. 发明申请
    • PROGRAM SYNTHESIS AND DEBUGGING USING MACHINE LEARNING TECHNIQUES
    • 使用机器学习技术的程序合成和调试
    • US20080282108A1
    • 2008-11-13
    • US11745295
    • 2007-05-07
    • Vladimir JojicNebojsa JojicSumit Gulwani
    • Vladimir JojicNebojsa JojicSumit Gulwani
    • G06F9/44G06F11/00G06F15/18
    • G06F11/3624G06F8/436
    • One embodiment is directed to synthesizing code fragments in a software routine using known inputs and corresponding expected outputs. A computer system provides a software routine with known inputs and corresponding expected outputs, infers software routine instructions based on the known inputs and corresponding expected outputs, and synthesizes a correctly functioning code fragment based on the inferred instructions. Another embodiment is directed to automatically resolving semantic errors in a software routine. A computer system provides the software routine with known inputs and corresponding expected outputs for portions of a program fragment where an error has been localized. The computer system learns a correctly functioning program fragment from pairs of input-output descriptions of the program fragment, determines the program statements that can transform given input states into given output states after execution of those program statements, and alters portions of the software routine with the learned program fragments.
    • 一个实施例涉及使用已知输入和相应的预期输出来合成软件例程中的代码片段。 计算机系统提供具有已知输入和对应的预期输出的软件例程,基于已知输入和相应的预期输出推断软件程序指令,并且基于推断的指令来合成正确运行的代码片段。 另一个实施例涉及自动解决软件程序中的语义错误。 计算机系统向软件例程提供已知输入和对于已经本地化错误的程序片段的部分的相应的预期输出。 计算机系统从程序片段的输入输出描述中学习正确运行的程序片段,确定在执行这些程序语句之后将给定的输入状态转换为给定的输出状态的程序语句,并且改变软件程序的一部分 学习的程序片段。
    • 54. 发明授权
    • System and method to facilitate pattern recognition by deformable matching
    • 通过可变形匹配促进模式识别的系统和方法
    • US07274821B2
    • 2007-09-25
    • US11302004
    • 2005-12-13
    • Nebojsa JojicPatrice Simard
    • Nebojsa JojicPatrice Simard
    • G06K9/62
    • G06K9/6206Y10S707/99936
    • A system and method to facilitate pattern recognition or matching between patterns are disclosed that is substantially invariant to small transformations. A substantially smooth deformation field is applied to a derivative of a first pattern and a resulting deformation component is added to the first pattern to derive a first deformed pattern. An indication of similarity between the first pattern and a second pattern may be determined by minimizing the distance between the first deformed pattern and the second pattern with respect to deformation coefficients associated with each deformed pattern. The foregoing minimization provides a system (e.g., linear) that may be solved with standard methods.
    • 公开了一种促进模式识别或模式匹配的系统和方法,其基本上不变形为小变换。 将基本平滑的变形场施加到第一图案的导数,并将所得到的变形分量添加到第一图案以导出第一变形图案。 第一图案和第二图案之间的相似度的指示可以通过相对于与每个变形图案相关联的变形系数最小化第一变形图案和第二图案之间的距离来确定。 上述最小化提供了可以用标准方法解决的系统(例如,线性)。
    • 57. 发明授权
    • Click passwords
    • 点击密码
    • US07243239B2
    • 2007-07-10
    • US10187311
    • 2002-06-28
    • Darko KirovskiNebojsa JojicPaul Roberts
    • Darko KirovskiNebojsa JojicPaul Roberts
    • H04K1/00H04L9/00
    • G06F21/36
    • Methods, systems, devices and/or storage media for passwords. An exemplary method tiles an image, associates an index with each tile and optionally determines offsets for select tiles. Further, the tiling optionally relies on probability and/or entropy. An exemplary password system includes an image; a grid associated with the image, the grid composed of polygons; an index associated with each polygon; and an offset associated with each polygon wherein password identification relies on one or more indices and one or more offsets.
    • 用于密码的方法,系统,设备和/或存储介质。 贴图图像的示例性方法,将索引与每个瓦片相关联,并且可选地确定选择瓦片的偏移量。 此外,平铺可选地依赖于概率和/或熵。 示例性密码系统包括图像; 与图像相关联的网格,网格由多边形组成; 与每个多边形相关联的索引; 以及与每个多边形相关联的偏移量,其中密码识别依赖于一个或多个索引和一个或多个偏移量。
    • 58. 发明申请
    • Large-scale information collection and mining
    • 大型信息采集和挖掘
    • US20070106626A1
    • 2007-05-10
    • US11266974
    • 2005-11-04
    • Craig MundieDavid HeckermanNebojsa JojicRandy Hinrichs
    • Craig MundieDavid HeckermanNebojsa JojicRandy Hinrichs
    • G06N3/02
    • G06N99/005G06F19/00G06Q10/10G06Q50/24G16H50/20
    • The methods/systems described herein facilitate large-scale data collection and aggregation. One exemplary system that facilitates large-scale reporting of health-related data comprises a data collection component, a database and an aggregation component. The data collection component can collect health-related data on a large-scale from a non-selected population. The database can store at least some of the health-related data. The aggregation component can facilitate automatically ascertaining at least one pattern from the health-related data at least in part by applying one or more statistical, data-mining or machine-learning techniques to the database. One exemplary method of extracting health observations from information obtained on a macro-scale comprises receiving information about a plurality of self-selected subjects, pooling the information, mining the pooled information at least in part by employing a data-mining algorithm to infer one or more health observations from the pooled information, and monetizing the one or more health observations.
    • 这里描述的方法/系统有助于大规模数据收集和聚合。 促进健康相关数据的大规模报告的一个示例性系统包括数据收集组件,数据库和聚合组件。 数据收集组件可以从非选定人群大规模收集健康相关数据。 数据库可以存储至少一些健康相关数据。 聚合组件可以至少部分地通过将一个或多个统计,数据挖掘或机器学习技术应用于数据库来自动地从健康相关数据确定至少一个模式。 从在宏观尺度上获得的信息中提取健康观测的一个示例性方法包括:接收关于多个自选择对象的信息,汇集信息,至少部分地通过采用数据挖掘算法推断出一个或多个 从汇集的信息中获得更多的健康意见,并通过一个或多个健康观察获利。
    • 59. 发明申请
    • MODELING REFLECTIONS WITHIN AN IMAGE SEQUENCE
    • 在图像序列中建模反射
    • US20070019884A1
    • 2007-01-25
    • US11534647
    • 2006-09-23
    • Nebojsa JojicBrendan Frey
    • Nebojsa JojicBrendan Frey
    • G06K9/36G06T17/00
    • G06T7/215G06T2207/10016G06T2207/30196
    • A simplified general model and an associated estimation algorithm is provided for modeling visual data such as a video sequence. Specifically, images or frames in a video sequence are represented as collections of flat moving objects that change their appearance and shape over time, and can occlude each other over time. A statistical generative model is defined for generating such visual data where parameters such as appearance bit maps and noise, shape bit-maps and variability in shape, etc., are known. Further, when unknown, these parameters are estimated from visual data without prior pre-processing by using a maximization algorithm. By parameter estimation and inference in the model, visual data is segmented into components which facilitates sophisticated applications in video or image editing, such as, for example, object removal or insertion, tracking and visual surveillance, video browsing, photo organization, video compositing, etc.
    • 提供了简化的一般模型和相关联的估计算法用于对诸如视频序列的视觉数据进行建模。 具体来说,视频序列中的图像或帧被表示为随时间改变其外观和形状的平坦移动对象的集合,并且可以随着时间而彼此闭塞。 定义了统计生成模型,用于生成这样的视觉数据,其中诸如出现位图和噪声,形状位图和形状变异等参数是已知的。 此外,当未知时,这些参数是通过使用最大化算法从视觉数据估计而没有预先预处理的。 通过模型中的参数估计和推理,视觉数据被分割成有助于视频或图像编辑中的复杂应用的组件,例如对象去除或插入,跟踪和视觉监视,视频浏览,照片组织,视频合成, 等等