会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 53. 发明申请
    • MICROLITHOGRAPHIC PROJECTION EXPOSURE APPARATUS AND METHOD OF OPERATING SAME
    • 微波投影曝光装置及其操作方法
    • WO2014117791A1
    • 2014-08-07
    • PCT/EP2013/000300
    • 2013-02-01
    • CARL ZEISS SMT GMBH
    • GRÄUPNER, PaulGRUNER, Toralf
    • G03F7/20
    • G03F7/70266G03F7/70891
    • A scanner type microlithographic projection exposure apparatus comprises a wavefront correction device (42; 142) which is arranged between an object plane (28) and an image plane (30), but outside any pupil plane (36, 38), of a projection objective. The wavefront correction device (42) comprises a solid body (44; 144) having an optical surface (46) on which projection light (PL) is incident during operation of the apparatus (10). The device has a plurality of heating paths (52X, 52Y; 152X, 152Y) along which heat can be individually generated. The heating paths are arranged inside a correction volume of the solid body (44; 144), through which volume projection light passes, with a varying non-zero heating path density. The heating path density is, if seen along at least one line parallel to the scan direction (Y), higher in a center (56) of the correction volume than at a margin thereof (58, 60).
    • 扫描仪型微光刻投影曝光装置包括布置在物平面(28)和图像平面(30)之间但在投影物镜的任何光瞳平面(36,38)之外的波前校正装置(42; 142) 。 波前校正装置(42)包括具有光学表面(46)的固体(44; 144),投影光(PL)在装置(10)的操作期间入射。 该装置具有多个可以分别产生热量的加热路径(52X,52Y; 152X,152Y)。 加热路径布置在固体(44; 144)的修正体积内,体积投影光通过该体积投影光,具有变化的非零加热路径密度。 如果沿平行于扫描方向(Y)的至少一条线看到加热通道密度,则在校正体积的中心(56)中比在其边缘(58,60)更高。
    • 54. 发明申请
    • PROJECTION LENS FOR EUV MICROLITHOGRAPHY, FILM ELEMENT AND METHOD FOR PRODUCING A PROJECTION LENS COMPRISING A FILM ELEMENT
    • 用于EUV微结构,电影元件的投影镜头和制作包含电影元件的投影镜头的方法
    • WO2013117343A1
    • 2013-08-15
    • PCT/EP2013/000382
    • 2013-02-08
    • CARL ZEISS SMT GMBH
    • BITTNER, BorisWABRA, NorbertSCHNEIDER, SonjaSCHNEIDER, RicardaWAGNER, HendrikWALD, ChristianILIEW, RumenSCHICKETANZ, ThomasGRUNER, ToralfPAULS, WalterSCHMIDT, Holger
    • G03F7/20G21K1/06
    • G02B17/0892B82Y10/00G02B17/0896G03F7/70191G03F7/70233G03F7/70316G21K1/062Y10T29/49826
    • A Projection lens (PO) for imaging a pattern arranged in an object plane (OS) of the projection lens into an image plane (IS) of the projection lens by means of electromagnetic radiation having a working wavelength λ from the extreme ultraviolet range (EUV) comprises a multiplicity of mirrors (M1 - M6) having mirror surfaces which are arranged in a projection beam path between the object plane and the image plane in such a way that a pattern arranged in the object plane can be imaged into the image plane by means of the mirrors. An assigned wavefront correction device (WFC) comprises a film element (FE) having a film which is arranged in the projection beam path in an operating mode of the wavefront correction device and at the working wavelength λ transmits a predominant proportion of the EUV radiation impinging in an optical used region. The film element comprises a first layer, which consists of a first layer material having a first complex refractive index n 1 = (1-δ 1 ) + iβ 1 and has a first optical layer thickness, which varies locally over the used region in accordance with a first layer thickness profile, and a second layer, which consists of a second layer material having a second complex refractive index n 2 = (1-δ 2 ) + iβ 2 and has a second optical layer thickness, which varies locally over the used region in accordance with a second layer thickness profile, wherein the first layer thickness profile and the second layer thickness profile are different. The deviation δ 1 of the real part of the first refractive index from 1 is large relative to the absorption coefficient β 1 of the first layer material and the deviation δ 2 of the real part of the second refractive index from 1 is small relative to the absorption coefficient β 2 of the second layer material.
    • 一种用于通过具有从远紫外线范围(EUV)的工作波长λ的电磁辐射将布置在投影透镜的物平面(OS)中的图案成像到投影透镜的图像平面(IS)中的投影透镜(PO) )包括多个反射镜(M1-M6),其具有布置在物平面和图像平面之间的投影光束路径中的镜面,使得布置在物平面中的图案可以通过 镜子的手段 分配的波前校正装置(WFC)包括具有膜的膜元件(FE),其膜在波前校正装置的操作模式中布置在投影束路径中,并且在工作波长λ下透射EUV辐射的主要部分 在光学用途区域。 薄膜元件包括第一层,该第一层由具有第一复合折射率n1 =(1-δ1)+ ibeta1的第一层材料组成,并具有第一光学层厚度,该厚度根据第一层 层厚度分布,以及第二层,其由具有第二复折射率n2 =(1-δ2)+ ibeta2的第二层材料组成,并具有第二光学层厚度,其在所使用的区域上局部变化,根据 第二层厚度轮廓,其中第一层厚度轮廓和第二层厚度轮廓不同。 第一折射率从1的实部的偏差δ1相对于第一层材料的吸收系数β1大,并且第二折射率的实部的距离1的偏差Δ2相对于吸收系数β2较小 的第二层材料。
    • 55. 发明申请
    • OPTISCHES SYSTEM, PROJEKTIONSBELICHTUNGSANLAGE UND VERFAHREN
    • WO2023088651A1
    • 2023-05-25
    • PCT/EP2022/079937
    • 2022-10-26
    • CARL ZEISS SMT GMBH
    • VON HODENBERG, MartinGRUNER, Toralf
    • G03F7/20G02B5/00
    • Ein optisches System (100, 200) für eine Projektionsbelichtungsanlage (1), aufweisend eine Blende (110, 112, 212, 224, 302), insbesondere eine Obskurationsblende (112, 302), eine Blende für die numerische Apertur (110, 212) oder eine Falschlichtblende (224), die zumindest abschnittsweise in einem Strahlengang (114, 218) des optischen Systems (100, 200) angeordnet ist, um den Strahlengang (114, 218) zumindest abschnittsweise abzuschatten, eine Heizeinrichtung (324) zum Einbringen von Wärme (Q) in die Blende (110, 112, 212, 224, 302), wobei die Blende (110, 112, 212, 224, 302) mit Hilfe des Einbringens der Wärme (Q) von einer Ausgangsgeometrie (Z1) in eine Designgeometrie (Z2) verformbar ist, und einen Temperatursensor (334), ein Photoelement (336) und/oder eine Infrarotkamera (338), wobei eine Steuer- und Regeleinrichtung (340) des optischen Systems (100, 200) dazu eingerichtet ist, basierend auf Messignalen des Temperatursensors (334), des Photoelements (336) und/oder der Infrarotkamera (338) und/oder auf Informationen betreffend eine Temperaturverteilung weiterer optischer Elemente (124, M1 – M6), die an vergleichbarer Position wie die Blende (110, 112, 212, 224, 302) in dem Strahlengang (114, 218) angeordnet sind, eine lokale Blendentemperaturverteilung der Blende (110, 112, 212, 224, 302) zu bestimmen und die Heizeinrichtung (324) derart anzusteuern, dass eine Soll-Blendentemperaturverteilung der Blende (110, 112, 212, 224, 302) erzielbar ist.
    • 58. 发明申请
    • OPTICAL MODULE WITH AN ANTICOLLISION DEVICE FOR MODULE COMPONENTS
    • 具有用于模块组件的反馈装置的光学模块
    • WO2018029190A1
    • 2018-02-15
    • PCT/EP2017/070056
    • 2017-08-08
    • CARL ZEISS SMT GMBH
    • HARTJES, JoachimWOLF, AlexanderGRUNER, Toralf
    • G03F7/20F16F15/03G02B7/182
    • G03F7/70825F16F15/03G02B7/1828G03F7/70075G03F7/70158G03F7/702G03F7/709G21K1/06
    • The present invention relates to an optical module with a first and a second component (108, 109), a supporting structure (112) and an anticollision device (114). The first component (108) is supported by the supporting structure (112) and is arranged adjacent to and at a distance from the second component (109) to form a gap. The supporting structure (112) defines a path of relative movement, on which the first and second components (108, 109) move in relation to one another under the influence of a disturbance, a collision between collision regions (108.1, 109.1) of the first and second components (108, 109) occurring if the anticollision device (114) is inactive. The anticollision device (114) comprises a first anticollision unit (114.1) on the first component (108), which produces a first field, and a second anticollision unit on the second component (109), which is assigned to the first anticollision unit (114.1) and produces a second field. As the first and second components (108, 109) increasingly approach each other, the first and second fields produce an increasing counter-force on the first component (108) that counteracts the approach. The first and/or second anticollision unit (114.1, 114.2) comprises a plurality of anticollision elements producing partial fields, which are assigned to one another in such a way that the superimposition of their partial fields produces a field with a field line density that decreases more sharply with increasing distance from the anticollision unit (114.1, 114.2) along the path of relative movement than a field line density of one of the partial fields.
    • 具有第一和第二部件(108,109),支撑结构(112)和防撞装置(114)的光学组件技术领域本发明涉及一种具有第一和第二部件(108,109),支撑结构(112)和防撞装置(114)的光学组件。 第一部件(108)由支撑结构(112)支撑并且布置成与第二部件(109)相邻并与其间隔开以形成间隙。 支撑结构(112)限定相对运动的路径,第一部件(108)和第二部件(109)在干扰的影响下相对于彼此移动,在该相对运动的路径上的碰撞区域(108.1,109.1) 如果防碰撞装置(114)不活动,则出现第一和第二部件(108,109)。 防碰撞装置114包括在第一部件108上产生第一场的第一防碰撞单元114.1和在第二部件109上的第二防碰撞单元, 114.1)并产生第二个领域。 随着第一和第二部件(108,109)越来越靠近彼此,第一和第二场在第一部件(108)上产生反作用力的增大的反作用力。 第一和/或第二防碰撞单元(114.1,114.2)包括产生部分场的多个防碰撞元件,这些防碰撞元件以这样的方式彼此分配,使得它们的部分场的叠加产生场线密度减小的场 随着距相对运动路径上的防冲突单元(114.1,114.2)的距离增加,比其中一个局部场的场线密度更加剧烈。
    • 59. 发明申请
    • MIRROR ARRANGEMENT FOR LITHOGRAPHY EXPOSURE APPARATUS AND OPTICAL SYSTEM COMPRISING MIRROR ARRANGEMENT
    • 用于平面曝光装置和包含镜面布置的光学系统的镜面布置
    • WO2017009096A1
    • 2017-01-19
    • PCT/EP2016/065772
    • 2016-07-05
    • CARL ZEISS SMT GMBH
    • HAKVOORT, Wouter Bernardus JohannesHOGERVORST, Richard PetrusRUTGERS, Petrus TheodorusHILD, KerstinGRUNER, Toralf
    • G21K1/06
    • G02B26/0858G03F7/7015G03F7/70191G03F7/702G03F7/70316G21K1/062
    • Mirror arrangement (1) for a lithography exposure apparatus (WSC) comprising a plurality of mirror elements (2a, 2b) adjacently arranged and jointly forming a mirror surface (3) of the mirror arrangement (1 ). Each mirror element (2a, 2b) comprises a substrate (4a, 4b) and a multilayer arrangement (5a, 5b) on the substrate (4a, 4b). The multilayer arrangement (5a, 5b) includes a reflective layer system (6a, 6b) having a radiation entrance surface (7a, 7b) forming a portion of the mirror surface (3) and a piezoelectric layer (8a, 8b) arranged between the radiation entrance surface (7a, 7b) and the substrate (4a, 4b). Each mirror element (2a, 2b) comprises an electrode arrangement (9a, 9b, 9c) associated with the piezoelectric layer (8a, 8b) for generating an electric field, wherein a layer thickness (tp) of the piezoelectric layer (8a, 8b) can be controlled by the electric field. An interconnection arrangement (10) electrically interconnecting adjacent first and second electrodes (9a, 9b) of adjacent electrode arrangements (9a, 9b, 9c) is provided. According to one formulation the interconnection arrangement (10) generates an interconnection electric field in a gap region (1 1 ) between the first and second electrodes (9a, 9b), wherein the interconnection electric field generates a continuous transition between a first electric field at the first electrode (9a) and a second electric field at the second electrode (9b). According to another formulation an electric resistance (Ri) of the interconnection arrangement (10) in a gap region (11) between the first and second electrodes (9a, 9b) is greater than an electric resistance (Rw) of the first and second electrodes (9a, 9b) and less than an electric resistance (RI) of the piezoelectric layers (8a, 8b) of the adjacent electrode arrangements (9a, 9b, 9c) with the first and second electrodes (9a, 9b).
    • 一种用于光刻曝光设备(WSC)的镜面布置(1),包括相邻布置并共同形成镜子装置(1)的镜面(3)的多个镜元件(2a,2b)。 每个镜元件(2a,2b)包括在基底(4a,4b)上的基底(4a,4b)和多层布置(5a,5b)。 多层布置(5a,5b)包括具有形成镜面(3)的一部分的辐射入射面(7a,7b)的反射层系(6a,6b)和布置在所述反射层 辐射入射面(7a,7b)和基板(4a,4b)。 每个镜元件(2a,2b)包括与用于产生电场的压电层(8a,8b)相关联的电极装置(9a,9b,9c),其中压电层(8a,8b)的层厚度(tp) )可以由电场控制。 提供了将相邻电极布置(9a,9b,9c)的相邻的第一和第二电极(9a,9b)电互连的互连布置(10)。 根据一个公式,互连布置(10)在第一和第二电极(9a,9b)之间的间隙区域(11)中产生互连电场,其中互连电场在第一和第二电极之间的第一电场 第一电极(9a)和第二电极(9b)处的第二电场。 根据另一个公式,在第一和第二电极(9a,9b)之间的间隙区域(11)中的互连装置(10)的电阻(R 1)大于第一和第二电极的电阻(Rw) (9a,9b)并且小于与第一和第二电极(9a,9b)相邻的电极布置(9a,9b,9c)的压电层(8a,8b)的电阻(RI)。
    • 60. 发明申请
    • BELEUCHTUNGSSYSTEM FÜR EINE MIKROLITHOGRAPHIE-PROJEKTIONSBELICHTUNGSANLAGE SOWIE MIKROLITHOGRAPHIE-PROJEKTIONSBELICHTUNGSANLAGE MIT EINEM SOLCHEN BELEUCHTUNGSSYSTEM
    • 照明系统,微光刻投射曝光系统及微光刻投射曝光系统具有这样的照明系统
    • WO2016188739A1
    • 2016-12-01
    • PCT/EP2016/060487
    • 2016-05-11
    • CARL ZEISS SMT GMBH
    • SHAFER, DavidSCHWAB, MarkusGRUNER, ToralfHERKOMMER, Alois
    • G03F7/20G02B17/08
    • G03F7/702G03F7/70066
    • Ein Beleuchtungssystem (ILL) für eine Mikrolithographie-Projektionsbelichtungsanlage zur Beleuchtung eines Beleuchtungsfeldes mit dem Licht einer primären Lichtquelle umfasst eine Pupillenformungseinheit (PFU) zum Empfang von Licht der primären Lichtquelle (LS) und zur Erzeugung einer zweidimensionalen Intensitätsverteilung in einer Pupillenformungsfläche (PUP) des Beleuchtungssystems, ein Übertragungssystem (TRANS) zur Übertragung der Intensitätsverteilung in ein Zwischen-Beleuchtungsfeld (IF), das in einer Zwischenfeldebene (IFP) liegt; und ein optisches Abbildungssystem (IMS) zur Abbildung des in der Zwischenfeldebene angeordneten Zwischen-Beleuchtungsfeldes in das Beleuchtungsfeld, das in einer zur Zwischenfeldebene optisch konjugierten Austrittsebene (EX) des Beleuchtungssystems liegt. Das Beleuchtungssystem ist dadurch gekennzeichnet, dass das optische Abbildungssystem (IMS) ein katadioptrisches Abbildungssystem mit einer Vielzahl von Linsen und mindestens einem Konkavspiegel (CM) ist.
    • 一种照明系统,包括:(ILL),用于微光刻投射曝光设备,用于与光从一个主光源,光瞳形成单元(PFU),用于从主光源(LS)接收光照明的照明场和一个用于在照明系统的光瞳成形面(PUP)的二维强度分布 用于发射的强度分布的传输系统(TRANS)处于中间的照明场(IF),它在中间场平面(IFP); 和用于成像的布置在中间场平面中间的照明场,它位于在光学共轭的照明系统的中间场平面出射面(EX)的照明场的成像光学系统(IMS)。 该照明系统的特征在于,所述光学成像系统(IMS)是一种反射折射成像系统的多个透镜和至少一个凹面反射镜(CM)。