会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 41. 发明授权
    • Hemorrhoid ligation apparatus, ligation kit containing the apparatus and method for ligating hemorrhoid
    • 痔疮结扎装置,包含痔疮结扎装置及方法的连接试剂盒
    • US08591525B2
    • 2013-11-26
    • US12071057
    • 2008-02-14
    • Masao Ikeda
    • Masao Ikeda
    • A61B17/12
    • A61B17/12013A61B50/20A61B50/30A61B2017/12018Y10T29/53657
    • The hemorrhoid ligation apparatus (10) includes a main cylinder (12) to which an O-ring (50) for ligating the hemorrhoid is to be attached on an outer circumferential surface of a front end portion, a sub cylinder (14) air-tightly and slidably provided inside the main cylinder (12), so as to suck the hemorrhoid into the front end portion of the main cylinder (12) upon being drawn toward a rear end portion of the main cylinder (12), an operating fluid loaded inside the sub cylinder (14), and a plunger (16) air-tightly and slidably provided inside the sub cylinder (14), so as to pressurize the operating fluid upon being squeezed toward a front end portion of the sub cylinder (14), to thereby squeeze the O-ring (50) toward the front end portion of the main cylinder (12) with the pressurized operating fluid, thus detaching the O-ring (50) from the main cylinder (12).
    • 痔疮结扎装置(10)包括主缸(12),用于将痔疮结扎的O形环(50)安装在前端部的外周面上,副气缸(14) 紧密且可滑动地设置在主气缸(12)内部,以便在朝向主气缸(12)的后端部分抽吸时将痔疮吸入主气缸(12)的前端部分, 在副气缸14内部气密地可滑动地设置的柱塞16,以便在朝向副气缸14的前端侧挤压工作液时, 由此,利用加压工作流体将O形环(50)朝向主缸(12)的前端部挤压,从而将O形环(50)从主缸(12)拆下。
    • 48. 发明授权
    • Gan semiconductor device
    • 甘半导体器件
    • US07372080B2
    • 2008-05-13
    • US10517877
    • 2003-06-19
    • Osamu GotoOsamu MatsumotoTomomi SasakiMasao Ikeda
    • Osamu GotoOsamu MatsumotoTomomi SasakiMasao Ikeda
    • H01L29/22H01L33/00
    • H01S5/0207H01S5/0014H01S5/0422H01S5/2201H01S5/32341
    • Provided is a GaN-based semiconductor light emitting device formed on a GaN single-crystal substrate and having a configuration capable of reducing a current leak.A GaN-based semiconductor laser device (50) is disclosed as an example of the GaN-based semiconductor light emitting device, and it is a semiconductor laser device having a structure such that a p-side electrode and an n-side electrode are provided on a multilayer structure of GaN-based compound semiconductor layers. The GaN-based semiconductor laser device (50) is similar in configuration to a conventional GaN-based semiconductor laser device formed on a sapphire substrate except that a GaN single-crystal substrate (52) is used in place of the sapphire substrate and that the multilayer structure is directly formed on the GaN single-crystal substrate (52) without providing a GaN-ELO structure layer. The GaN single-crystal substrate (52) has continuous belt-shaped core portions (52a) each having a width of 10 μm. These core portions (52a) are spaced apart from each other by a distance of about 400 μm. A laser stripe (30), a pad metal (37) for the p-side electrode (36), and the n-side electrode (38) are provided on the multilayer structure in a region except the core portions (52a) of the GaN single-crystal substrate (52). The horizontal distance Sp between the pad metal (37) and the core portion (52a) adjacent thereto is 95 μm, and the horizontal distance Sn between the n-side electrode (38) and the core portion (52a) adjacent thereto is also 95 μm.
    • 提供了一种形成在GaN单晶衬底上并具有能够减少电流泄漏的构造的GaN基半导体发光器件。 作为GaN系半导体发光元件的一例,公开了GaN系半导体激光元件(50),是具有p侧电极和n侧电极的结构的半导体激光元件 在GaN基化合物半导体层的多层结构上。 GaN基半导体激光器件(50)的结构与形成在蓝宝石衬底上的常规GaN基半导体激光器器件相似,除了使用GaN单晶衬底(52)代替蓝宝石衬底,并且 多层结构直接形成在GaN单晶衬底(52)上,而不提供GaN-ELO结构层。 GaN单晶衬底(52)具有宽度为10μm的连续的带状芯部(52a)。 这些芯部分(52a)彼此隔开约400μm的距离。 激光条纹(30),用于p侧电极(36)的焊盘金属(37)和n侧电极(38)设置在除了芯部(52a)的芯部 GaN单晶衬底(52)。 焊垫金属(37)与与其相邻的芯部(52a)之间的水平距离Sp为95μm,n侧电极(38)与与其相邻的芯部(52a)之间的水平距离Sn为 也是95妈妈。
    • 50. 发明申请
    • Nitride semiconductor wafer and method of processing nitride semiconductor wafer
    • 氮化物半导体晶片和氮化物半导体晶片的加工方法
    • US20050145879A1
    • 2005-07-07
    • US11055599
    • 2005-02-11
    • Masahiro NakayamaNaoki MatsumotoKoshi TamamuraMasao Ikeda
    • Masahiro NakayamaNaoki MatsumotoKoshi TamamuraMasao Ikeda
    • B24B37/00C30B29/38H01L21/20H01L21/304H01L21/306H01L33/00H01L21/00
    • H01L21/02008B24B37/08H01L21/02024Y10S438/959
    • Nitride semiconductor wafers which are produced by epitaxially grown nitride films on a foreign undersubstrate in vapor phase have strong inner stress due to misfit between the nitride and the undersubstrate material. A GaN wafer which has made by piling GaN films upon a GaAs undersubstrate in vapor phase and eliminating the GaAs undersubstrate bends upward due to the inner stress owing to the misfit of lattice constants between GaN and GaAs. Ordinary one-surface polishing having the steps of gluing a wafer with a surface on a flat disc, bringing another surface in contact with a lower turntable, pressing the disc, rotating the disc, revolving the turntable and whetting the lower surface, cannot remedy the inherent distortion. The Distortion worsens morphology of epitaxial wafers, lowers yield of via-mask exposure and invites cracks on surfaces. Nitride crystals are rigid but fragile. Chemical/mechanical polishing has been requested in vain. Current GaN wafers have roughened bottom surfaces, which induce contamination of particles and fluctuation of thickness. Circular nitride wafers having a diameter larger than 45 mm are made and polished. Gross-polishing polishes the nitride wafers in a pressureless state with pressure less than 60 g/cm2 by lifting up the upper turntable for remedying distortion. Distortion height H at a center is reduced to H≦12 μm. Minute-polishing is a newly-contrived CMP which polishes the nitride wafers with a liquid including potassium hydroxide, potassium peroxodisulfate and powder, irradiates the potassium peroxodisulfate with ultraviolet rays. The CMP-polished top surface has roughness RMS of 0.1 nm≦RMS≦5 nm or more favorably 0.1 nm≦RMS≦0.5 nm. The CMP-polished bottom surface has roughness RMS of 0.1 nm≦RMS≦5000 nm or more favorably 0.1 nm≦RMS≦2 nm. TTV is less than 10 μm.
    • 由氮化物和下衬底材料之间的失配导致的,由外延生长的氮化物膜在气相中的外来下衬衬底产生的氮化物半导体晶片具有很强的内部应力。 通过在气相中在GaAs下衬底上堆叠GaN膜而消除GaAs下衬层而制成的GaN晶片由于内部应力而由于GaN和GaAs之间的晶格常数的失配而向上弯曲。 通常的单面抛光具有将晶片与平面盘上的表面胶合的步骤,使另一表面与下转台接触,按压盘,旋转盘,旋转转台并磨削下表面,不能补救 固有失真。 失真会加剧外延晶片的形态,降低通孔掩模曝光的产量,并引起表面裂纹。 氮化物晶体是刚性但脆弱的。 化学/机械抛光已被要求徒劳。 当前的GaN晶圆已经粗糙化了底面,这引起了颗粒的污染和厚度的波动。 制造和抛光直径大于45mm的圆形氮化物晶片。 通过抬起上转盘来补偿变形,粗抛光在压力低于60g / cm 2的无压状态下抛光氮化物晶片。 中心处的失真高度H降低到H <= 12 mum。 分钟抛光是一种新设计的CMP,它们用含氢氧化钾,过氧硫酸钾和粉末的液体对氮化物晶片进行抛光,用紫外线照射过氧二硫酸钾。 CMP抛光的顶表面的粗糙度RMS为0.1nm <= RMS <= 5nm或更优选为0.1nm <= RMS <= 0.5nm。 CMP抛光的底表面的粗糙度RMS为0.1nm <= RMS <= 5000nm或更优选为0.1nm <= RMS <= 2nm。 TTV小于10妈