会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 45. 发明授权
    • Method of reducing via and contact dimensions beyond photolithography
equipment limits
    • 降低光刻设备限制以外的通孔和接触尺寸的方法
    • US6137182A
    • 2000-10-24
    • US137471
    • 1998-08-20
    • Fred N. HauseMark I. GardnerRobert Dawson
    • Fred N. HauseMark I. GardnerRobert Dawson
    • H01L21/768H01L23/48
    • H01L21/76816
    • A semiconductor process for forming an interlevel contact. A semiconductor wafer is provided with a semiconductor substrate, a first conductive layer formed on the substrate, and a dielectric layer formed on the conductive layer. A border layer, preferably comprised of polysilicon or silicon nitride is formed on the dielectric layer. Portions of the border layer are then selectively removed to expose an upper surface of a spacer region of the dielectric layer, the selective removal of the border layer resulting in a border layer having an annular sidewall extending upward from the dielectric layer and encircling the spacer region. A spacer structure is then formed on the annular sidewall, preferably, the spacer structure is formed by chemically vapor depositing a spacer material and anisotropically etching the spacer material to just clear in the planar regions with minimum overetch. The spacer structure thereby covering peripheral portions of the spacer region such that an upper surface of a contact region remains exposed. Portions of the dielectric layer within the contact region are then removed to form a via extending from an upper surface of the spacer structure to an upper surface of the first conductive layer. Preferably, the lateral dimension of the spacer region is approximately equal to the minimum feature size of a photolithography exposure apparatus in the lateral dimension of the via at substantially less than the minimum feature size of the photolithography exposure apparatus.
    • 一种用于形成层间接触的半导体工艺。 半导体晶片设置有半导体衬底,形成在衬底上的第一导电层和形成在导电层上的电介质层。 在电介质层上形成优选由多晶硅或氮化硅构成的边界层。 然后选择性地去除边界层的部分以暴露电介质层的间隔区域的上表面,选择性地去除边界层,导致边界层具有从电介质层向上延伸并环绕间隔区域的环形侧壁 。 然后在环形侧壁上形成间隔结构,优选地,间隔物结构通过化学气相沉积间隔物材料形成,并且各向异性地蚀刻间隔物材料,以便在具有最小过氧化物的平面区域中刚好清除。 间隔结构由此覆盖间隔区域的周边部分,使得接触区域的上表面保持暴露。 然后去除接触区域内的电介质层的部分以形成从间隔物结构的上表面延伸到第一导电层的上表面的通孔。 优选地,间隔区域的横向尺寸基本上等于光刻曝光装置在通孔的横向尺寸中的最小特征尺寸,其基本上小于光刻曝光装置的最小特征尺寸。
    • 46. 发明授权
    • Dissolvable dielectric method and structure
    • 溶解介电法和结构
    • US6091149A
    • 2000-07-18
    • US251059
    • 1999-02-18
    • Fred N. HauseBasab BandyopadhyayRobert DawsonH. Jim Fulford, Jr.Mark W. MichaelWilliam S. Brennan
    • Fred N. HauseBasab BandyopadhyayRobert DawsonH. Jim Fulford, Jr.Mark W. MichaelWilliam S. Brennan
    • H01L21/768H01L23/48H01L23/52H01L29/40
    • H01L21/7682
    • A fabrication process is provided that produces an air gap dielectric in which a multi-level interconnect structure is formed upon a temporary supporting material. The temporary material is subsequently dissolved away leaving behind an intralevel and an interlevel dielectric comprised of air. In one embodiment of the invention, a first interconnect level is formed on a barrier layer. A temporary support material is then formed over the first interconnect level and a second level of interconnect is formed on the temporary support material. Prior to formation of the second interconnect level, a plurality of pillar openings are formed in the temporary material and filled with a conductive material. In addition to providing a contact between the first and second level of interconnects, the pillars provide mechanical support for the second interconnect level. The temporary material is dissolved in a solution that attacks the temporary material but leaves the interconnect material and pillar material intact. In one embodiment of the invention, a passivation layer is formed on the second interconnect level prior to dissolving the temporary material. The air gap dielectric can be used with more than two levels of interconnect, if desired.
    • 提供一种制造工艺,其产生气隙电介质,其中在临时支撑材料上形成多层互连结构。 随后将临时材料溶解掉,留下由空气组成的层间和层间电介质。 在本发明的一个实施例中,在阻挡层上形成第一互连电平。 然后在第一互连层上形成临时支撑材料,并在临时支撑材料上形成第二层互连。 在形成第二互连级别之前,在临时材料中形成多个柱状开口并填充有导电材料。 除了在第一和第二级互连之间提供接触之外,支柱为第二互连电平提供机械支撑。 临时材料溶解在攻击临时材料的溶液中,但使互连材料和支柱材料完好无损。 在本发明的一个实施例中,在溶解临时材料之前,在第二互连层上形成钝化层。 如果需要,气隙电介质可以与多于两个级别的互连一起使用。
    • 47. 发明授权
    • Mask generation technique for producing an integrated circuit with
optimal metal interconnect layout for achieving global planarization
    • 用于制造具有最佳金属互连布局以实现全局平坦化的集成电路的掩模生成技术
    • US6049134A
    • 2000-04-11
    • US15821
    • 1998-01-29
    • Mark W. MichaelRobert DawsonFred N. HauseBasab BandyopadhyayH. Jim Fulford, Jr.William S. Brennan
    • Mark W. MichaelRobert DawsonFred N. HauseBasab BandyopadhyayH. Jim Fulford, Jr.William S. Brennan
    • H01L21/033H01L21/3105H01L21/768H01L29/72H01L21/283
    • H01L21/0334H01L21/31051H01L21/76819
    • A photolithography mask derivation process is provided for improving the overall planarity of interlevel dielectric deposited upon conductors formed by the derived photolithography mask. The photolithography mask is derived such that non-operational conductors are spaced a minimum distance from each other and from operational conductors to present a regular spaced arrangement of conductors upon which a dielectric layer can be deposited and readily planarized using, for example, chemical-mechanical polishing techniques. The resulting interlevel dielectric upper surface is globally planarized to an even elevational level across the entire semiconductor topography. The operational conductors are dissimilar from non-operational conductors in that the operational conductors are connected within a circuit path of an operational integrated circuit. Non-operational conductors are not connected within the integrated circuit path and generally are floating or are connected to a power supply. The non-operational conductors thereby do not contribute to the integrated circuit functionality other than to provide structural planarity to the overlying interlevel dielectric. The mask derivation process is applicable to either a metal interconnect photolithography mask or a polysilicon interconnect photolithography mask.
    • 提供了一种光刻掩模衍生方法,用于改善沉积在由衍生的光刻掩模形成的导体上的层间电介质的整体平面性。 衍生出光刻掩模,使得非操作导体彼此间隔开最小距离和与操作导体间隔开的规则间隔排列的导体,其上可使用例如化学机械的电介质层沉积并容易地平坦化 抛光技术。 所得的层间电介质上表面在整个半导体形貌上被全局平坦化到均匀的高度。 操作导体与非操作导体不相似,因为操作导体连接在可操作的集成电路的电路中。 非操作导体不在集成电路路径内连接,并且通常浮动或连接到电源。 因此,非操作导体对集成电路功能没有贡献,而不是为覆盖的层间电介质提供结构平面性。 掩模推导方法适用于金属互连光刻掩模或多晶硅互连光刻掩模。
    • 48. 发明授权
    • Multilevel interconnect structure of an integrated circuit having air
gaps and pillars separating levels of interconnect
    • 具有气隙的集成电路的多层互连结构和分离互连级别的柱
    • US5998293A
    • 1999-12-07
    • US67425
    • 1998-04-28
    • Robert DawsonMark W. MichaelWilliam S. BrennanBasab BandyopadhyayH. Jim Fulford, Jr.Fred N. Hause
    • Robert DawsonMark W. MichaelWilliam S. BrennanBasab BandyopadhyayH. Jim Fulford, Jr.Fred N. Hause
    • H01L21/768H01L23/522H01L21/283
    • H01L23/5226H01L21/7682H01L21/76885H01L23/5222H01L2924/0002
    • An improved multilevel interconnect structure is provided. The interconnect structure includes pillars spaced from each other across a wafer. The pillars are placed between levels of interconnect or between an interconnect level and a semiconductor substrate. The pillars are spaced from each other by an air gap, such that each conductor within a level of interconnect is spaced by air from one another. Furthermore, each conductor within one level of interconnect is spaced by air from each conductor within another level of interconnect. Air gaps afford a smaller interlevel and intralevel capacitance within the multilevel interconnect structure, and a smaller parasitic capacitance value affords minimal propagation delay and cross-coupling noise of signals sent through the conductors. The air gaps are formed by dissolving a sacrificial dielectric, and the conductors are prevented from bending or warping in regions removed of sacrificial dielectric by employing anodization on not just the upper surfaces of each conductor, but the sidewalls as well. The upper and sidewall anodization provides a more rigid metal conductor structure than if merely the upper or sidewall surfaces were anodized. Accordingly, the pillars can be spaced further apart and yet provide all necessary support to the overlying conductors.
    • 提供了一种改进的多级互连结构。 互连结构包括跨越晶片彼此间隔开的柱。 支柱放置在互连层之间或互连层和半导体衬底之间。 支柱通过空气间隙彼此分开,使得互连级别内的每个导体彼此间隔着空气。 此外,一个级别的互连中的每个导体在另一个互连级别内的每个导体间隔着空气。 空气间隙在多电平互连结构内提供较小的层间和体积电容,并且较小的寄生电容值提供通过导体发送的信号的最小传播延迟和交叉耦合噪声。 通过溶解牺牲电介质形成气隙,并且通过不仅在每个导体的上表面,而且侧壁上采用阳极氧化,防止导体在去除牺牲电介质的区域中弯曲或翘曲。 上侧壁和侧壁阳极氧化提供了比仅仅将上表面或侧壁表面阳极氧化的更刚性的金属导体结构。 因此,支柱可以进一步间隔开,并且向上覆的导体提供所有必要的支撑。
    • 49. 发明授权
    • In-line detection and assessment of net charge in PECVD silicon dioxide
(oxide) layers
    • 在线检测和评估PECVD二氧化硅(氧化物)层中的净电荷
    • US5963783A
    • 1999-10-05
    • US93239
    • 1998-06-08
    • John K. LowellFred N. HauseRobert Dawson
    • John K. LowellFred N. HauseRobert Dawson
    • H01L21/316H01L21/66G01R31/265
    • H01L21/31612H01L21/02112H01L21/02274H01L22/14
    • The present method provides for the detection and assessment of the net charge in a PECVD oxide layer deposited on a surface of a semiconductor substrate. Electrical potential differences across PECVD oxide layers on as-produced semiconductor substrates are measured. Resultant PECVD oxide charge derivative values are plotted on an control chart and compared to calculated control parameters. All measurement techniques are non-contact and non-destructive, allowing them to be performed on as-processed semiconductor substrates at any time during or following a wafer fabrication process. In a first embodiment, a contact potential difference V.sub.CPD between a vibrating electrode and the semiconductor substrate is measured while the semiconductor substrate beneath the vibrating electrode is subjected to a constant beam of high intensity illumination. The resultant value of V.sub.CPD is equal to the electrical potential difference across the PECVD oxide layer V.sub.OX (plus a constant). In a second embodiment, the semiconductor substrate is not illuminated curing the measurement of V.sub.CPD. A conventional SPV apparatus is used to measure the surface barrier potential V.sub.SP of the semiconductor substrate. Subtracting the measured value of V.sub.SP from the measured value of V.sub.CPD yields the value of V.sub.OX (plus a constant).
    • 本方法提供了在沉积在半导体衬底的表面上的PECVD氧化物层中的净电荷的检测和评估。 测量生成半导体衬底上的PECVD氧化物层的电位差。 将得到的PECVD氧化物电荷衍生值绘制在控制图上并与计算的控制参数进行比较。 所有测量技术都是非接触式和非破坏性的,允许它们在晶片制造过程中或之后的任何时间在经处理的半导体衬底上进行。 在第一实施例中,测量振动电极和半导体衬底之间的接触电位差VCPD,同时振动电极下方的半导体衬底经受恒定的高强度照明光束。 VCPD的结果值等于PECVD氧化物层VOX(加常数)之间的电位差。 在第二实施例中,半导体衬底不被照射固化VCPD的测量。 常规的SPV装置用于测量半导体衬底的表面势垒电位VSP。 从VCPD的测量值中减去VSP的测量值,得到VOX的值(加一个常数)。