会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 45. 发明申请
    • METHOD OF REDUCING DISLOCATION-INDUCED LEAKAGE IN A STRAINED-LAYER FIELD-EFFECT TRANSISTOR
    • 降低应变层场效应晶体管中的分解诱导漏电的方法
    • US20090325358A1
    • 2009-12-31
    • US12539235
    • 2009-08-11
    • Steven J. Koester
    • Steven J. Koester
    • H01L21/322H01L21/336
    • H01L29/78H01L21/26506H01L21/26513H01L29/1041H01L29/1054H01L29/51H01L29/517H01L29/518
    • A structure and method of fabricating a semiconductor field-effect transistor (MOSFET) such as a strained Si n-MOSFET where dislocation or crystal defects spanning from source to drain is partially occupied by heavy p-type dopants. Preferably, the strained-layer n-MOSFET includes a Si, SiGe or SiGeC multi-layer structure having, in the region between source and drain, impurity atoms that preferentially occupy the dislocation sites so as to prevent shorting of source and drain via dopant diffusion along the dislocation. Advantageously, devices formed as a result of the invention are immune to dislocation-related failures, and therefore are more robust to processing and material variations. The invention thus relaxes the requirement for reducing the threading dislocation density in SiGe buffers, since the devices will be operable despite the presence of a finite number of dislocations.
    • 制造诸如应变Si n-MOSFET的半导体场效应晶体管(MOSFET)的结构和方法,其中跨越源极到漏极的位错或晶体缺陷部分地被重的p型掺杂剂占据。 优选地,应变层n-MOSFET包括在源极和漏极之间的区域中具有优先占据位错位置的杂质原子的Si,SiGe或SiGeC多层结构,以便防止源极和漏极通过掺杂剂扩散而短路 沿错位。 有利地,作为本发明的结果形成的装置不受位错相关的故障的影响,因此对于处理和材料变化更加鲁棒。 因此,本发明放松了降低SiGe缓冲器中的穿透位错密度的要求,因为即使存在有限数量的位错,器件也将是可操作的。
    • 47. 发明授权
    • Structure for and method of fabricating a high-speed CMOS-compatible Ge-on-insulator photodetector
    • 制造高速CMOS兼容的绝缘体上的光电探测器的结构和方法
    • US07510904B2
    • 2009-03-31
    • US11556739
    • 2006-11-06
    • Jack O. ChuGabriel K. DehlingerAlfred GrillSteven J. KoesterQiqing OuyangJeremy D. Schaub
    • Jack O. ChuGabriel K. DehlingerAlfred GrillSteven J. KoesterQiqing OuyangJeremy D. Schaub
    • H01L21/00
    • H01L31/101
    • The invention addresses the problem of creating a high-speed, high-efficiency photodetector that is compatible with Si CMOS technology. The structure consists of a Ge absorbing layer on a thin SOI substrate, and utilizes isolation regions, alternating n- and p-type contacts, and low-resistance surface electrodes. The device achieves high bandwidth by utilizing a buried insulating layer to isolate carriers generated in the underlying substrate, high quantum efficiency over a broad spectrum by utilizing a Ge absorbing layer, low voltage operation by utilizing thin a absorbing layer and narrow electrode spacings, and compatibility with CMOS devices by virtue of its planar structure and use of a group IV absorbing material. The method for fabricating the photodetector uses direct growth of Ge on thin SOI or an epitaxial oxide, and subsequent thermal annealing to achieve a high-quality absorbing layer. This method limits the amount of Si available for interdiffusion, thereby allowing the Ge layer to be annealed without causing substantial dilution of the Ge layer by the underlying Si.
    • 本发明解决了与Si CMOS技术兼容的高速高效光电探测器的问题。 该结构由薄的SOI衬底上的Ge吸收层组成,并且使用隔离区,交替的n型和p型接触以及低电阻表面电极。 该器件通过利用掩埋绝缘层,通过利用Ge吸收层,利用薄的吸收层和窄电极间隔的低电压操作以及兼容性来兼容宽泛的光谱,利用埋入的绝缘层来隔离底层衬底中产生的载流子, 通过其平面结构和使用IV族吸收材料的CMOS器件。 用于制造光电检测器的方法使用在薄SOI或外延氧化物上的Ge的直接生长,以及随后的热退火以实现高质量的吸收层。 该方法限制可用于相互扩散的Si的量,从而允许Ge层退火,而不会导致Ge层被下面的Si大量稀释。
    • 50. 发明授权
    • Method for fabricating MOSFET on silicon-on-insulator with internal body contact
    • 用于在绝缘体上制造具有内部接触的绝缘体上的MOSFET的方法
    • US09178061B2
    • 2015-11-03
    • US13572039
    • 2012-08-10
    • Jin CaiSteven J. KoesterAmlan Majumdar
    • Jin CaiSteven J. KoesterAmlan Majumdar
    • H01L21/28H01L21/44H01L29/78H01L29/08H01L29/417H01L29/66H01L29/786
    • H01L29/0847H01L29/41733H01L29/66659H01L29/7835H01L29/78612H01L29/78621
    • A method is provided for fabricating a semiconductor device. According to the method, a semiconductor layer is formed over a semiconductor-on-insulator substrate, and a gate is formed on the semiconductor layer. Source and drain extension regions and a deep drain region are formed in the semiconductor layer. A deep source region is formed in the semiconductor layer. A drain metal-semiconductor alloy contact is located on the upper portion of the deep drain region and abutting the drain extension region. A source metal-semiconductor alloy contact abuts the source extension region. The deep source region is located below and contacts a first portion of the source metal-semiconductor alloy contact. The deep source region is not located below and does not contact a second portion of the source metal-semiconductor alloy contact. The second portion of the source metal-semiconductor alloy contact is an internal body contact that directly contacts the semiconductor layer.
    • 提供了制造半导体器件的方法。 根据该方法,在绝缘体上半导体基板上形成半导体层,在半导体层上形成栅极。 源极和漏极延伸区域和深的漏极区域形成在半导体层中。 在半导体层中形成深源区。 漏极金属 - 半导体合金触点位于深漏区域的上部并邻接漏极延伸区域。 源极金属 - 半导体合金接触件邻接源极延伸区域。 深源区域位于源极金属 - 半导体合金接触件的第一部分下方并接触。 深源区不位于源极金属 - 半导体合金触点的第二部分下方并且不接触。 源极金属 - 半导体合金触点的第二部分是直接接触半导体层的内部主体接触。