会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 44. 发明授权
    • Selective uniaxial stress modification for use with strained silicon on insulator integrated circuit
    • 用于应变硅绝缘体集成电路的选择性单轴应力修正
    • US08039341B2
    • 2011-10-18
    • US11428953
    • 2006-07-06
    • Voon-Yew TheanBich-Yen NguyenDa Zhang
    • Voon-Yew TheanBich-Yen NguyenDa Zhang
    • H01L21/8238
    • H01L21/823807H01L21/823814H01L21/84H01L27/1203H01L29/66628H01L29/66636H01L29/7843H01L29/7848
    • A semiconductor fabrication process includes masking a first region, e.g., an NMOS region, of a semiconductor wafer, e.g., a biaxial, tensile strained silicon on insulator (SOI) wafer and creating recesses in source/drain regions of a second wafer region, e.g., a PMOS region. The wafer is then annealed in an ambient that promotes migration of silicon. The source/drain recesses are filled with source/drain structures, e.g., by epitaxial growth. The anneal ambient may include a hydrogen bearing species, e.g., H2 or GeH2, maintained at a temperature in the range of approximately 800 to 1000° C. The second region may be silicon and the source/drain structures may be silicon germanium. Creating the recesses may include creating shallow recesses with a first etch process, performing an amorphizing implant to create an amorphous layer, performing an inert ambient anneal to recrystallize the amorphous layer, and deepening the shallow recesses with a second etch process.
    • 半导体制造工艺包括掩蔽半导体晶片的第一区域(例如,NMOS区域),例如双轴拉伸应变绝缘体上硅(SOI)晶片,并在第二晶片区域的源极/漏极区域中产生凹陷,例如 ,PMOS区域。 然后将晶片在促进硅迁移的环境中退火。 源极/漏极凹槽用源极/漏极结构填充,例如通过外延生长。 退火环境可以包括保持在约800至1000℃范围内的温度的氢气种类,例如H 2或GeH 2。第二区域可以是硅,并且源极/漏极结构可以是硅锗。 创建凹槽可以包括用第一蚀刻工艺创建浅凹槽,执行非晶化注入以产生非晶层,执行惰性环境退火以使非晶层重结晶,以及用第二蚀刻工艺加深浅凹槽。
    • 46. 发明授权
    • Method for forming a semiconductor structure and structure thereof
    • 半导体结构的形成方法及其结构
    • US07615806B2
    • 2009-11-10
    • US11263119
    • 2005-10-31
    • Voon-Yew TheanJian ChenBich-Yen NguyenMariam G. SadakaDa Zhang
    • Voon-Yew TheanJian ChenBich-Yen NguyenMariam G. SadakaDa Zhang
    • H01L27/10
    • H01L21/823807H01L21/823821H01L21/82385H01L21/845H01L27/1211H01L29/7842H01L29/785
    • Forming a semiconductor structure includes providing a substrate having a strained semiconductor layer overlying an insulating layer, providing a first device region for forming a first plurality of devices having a first conductivity type, providing a second device region for forming a second plurality of devices having a second conductivity type, and thickening the strained semiconductor layer in the second device region so that the strained semiconductor layer in the second device region has less strain that the strained semiconductor layer in the first device region. Alternatively, forming a semiconductor structure includes providing a first region having a first conductivity type, forming an insulating layer overlying at least an active area of the first region, anisotropically etching the insulating layer, and after anisotropically etching the insulating layer, deposing a gate electrode material overlying at least a portion of the insulating layer.
    • 形成半导体结构包括提供具有覆盖在绝缘层上的应变半导体层的衬底,提供用于形成具有第一导电类型的第一多个器件的第一器件区域,提供第二器件区域,用于形成具有第 第二导电类型,并且使第二器件区域中的应变半导体层变厚,使得第二器件区域中的应变半导体层具有较小的第一器件区域中的应变半导体层的应变。 或者,形成半导体结构包括提供具有第一导电类型的第一区域,形成覆盖第一区域的至少有源区域的绝缘层,各向异性地蚀刻绝缘层,以及在各向异性蚀刻绝缘层之后, 覆盖绝缘层的至少一部分的材料。
    • 47. 发明申请
    • METHOD FOR FORMING A SEMICONDUCTOR STRUCTURE HAVING A STRAINED SILICON LAYER
    • 用于形成具有应变硅层的半导体结构的方法
    • US20070277728A1
    • 2007-12-06
    • US11421009
    • 2006-05-30
    • Mariam G. SadakaAlexander L. BarrBich-Yen NguyenVoon-Yew TheanTed R. White
    • Mariam G. SadakaAlexander L. BarrBich-Yen NguyenVoon-Yew TheanTed R. White
    • C30B21/04C30B13/00
    • C30B29/52C30B25/02H01L21/0245H01L21/0251H01L21/02532H01L21/0262H01L21/76254
    • A wafer having a silicon layer that is strained is used to form transistors. The silicon layer is formed by first forming a silicon germanium (SiGe) layer of at least 30 percent germanium that has relaxed strain on a donor wafer. A thin silicon layer is epitaxially grown to have tensile strain on the relaxed SiGe layer. The amount tensile strain is related to the germanium concentration. A high temperature oxide (HTO) layer is formed on the thin silicon layer by reacting dichlorosilane and nitrous oxide at a temperature of preferably between 800 and 850 degrees Celsius. A handle wafer is provided with a supporting substrate and an oxide layer that is then bonded to the HTO layer. The HTO layer, being high density, is able to hold the tensile strain of the thin silicon layer. The relaxed SiGe layer is cleaved then etched away to expose the thin silicon layer. A low temperature silicon layer is then epitaxially grown with tensile strain, correlated to the tensile strain of the thin silicon layer, on the thin silicon layer using trisilane at a temperature preferably not in excess of 500 degrees Celsius. The resulting tensile strain, correlated to the strain of the thin silicon layer, is thus also correlated to the germanium concentration of the relaxed SiGe layer. The thickness of the low temperature silicon layer, using the trisilane at low temperature, is significantly greater than what would normally be expected for a silicon layer of that tensile strain.
    • 具有应变的硅层的晶片用于形成晶体管。 通过首先在施主晶片上形成具有松弛应变的至少30%的锗的锗锗(SiGe)层来形成硅层。 外延生长薄硅层以在松弛的SiGe层上具有拉伸应变。 拉伸应变量与锗浓度有关。 优选在800至850摄氏度之间的温度下,通过使二氯硅烷和一氧化二氮反应,在薄硅层上形成高温氧化物(HTO)层。 手柄晶片设置有支撑基板和氧化物层,然后将其结合到HTO层。 高密度的HTO层能够保持薄硅层的拉伸应变。 松弛的SiGe层被切割,然后蚀刻掉以露出薄的硅层。 然后在优选不超过500摄氏度的温度下使用丙硅烷在薄硅层上外延生长与低硅薄层的拉伸应变相关的低温硅层。 因此,与薄硅层的应变相关的所得拉伸应变也与弛豫SiGe层的锗浓度相关。 在低温下使用丙硅烷的低温硅层的厚度明显大于该拉伸应变的硅层通常预期的厚度。