会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 33. 发明申请
    • TRANSMISSIVE-REFLECTIVE PHOTOCATHODE
    • 传输反射光栅
    • WO2013036576A1
    • 2013-03-14
    • PCT/US2012/053870
    • 2012-09-06
    • KLA-TENCOR CORPORATIONMALEEV, Ivan
    • MALEEV, Ivan
    • H01J40/06
    • H01J40/06G01J1/44H01L27/146
    • The present invention includes a transmissive- reflective photocathode including a membrane configured to absorb photons from an illumination source via a first surface of the membrane, the membrane further configured to emit photoelectrons in a reflection mode via the first surface, the membrane further configured to emit photoelectrons in a transmissive mode via a second surface, the first surface and the second surface being substantially parallel, and a membrane support structure configured to mechanically secure the membrane, the membrane support structure further configured to provide at least a first pathway between the first surface and free space and a second pathway between the second surface and free space.
    • 本发明包括透射反射光电阴极,其包括被配置为经由膜的第一表面从照明源吸收光子的膜,所述膜还被配置为经由第一表面以反射模式发射光电子,所述膜还被配置为发射 光电子以透射模式经由第二表面,所述第一表面和所述第二表面基本上平行;以及膜支撑结构,其被配置为机械地固定所述膜,所述膜支撑结构进一步构造成在所述第一表面和所述第一表面之间提供至少第一通路 和自由空间以及第二表面和自由空间之间的第二路径。
    • 34. 发明申请
    • NANOWIRE PHOTOCATHODE AND METHOD FOR PRODUCING SUCH A PHOTOCATHODE
    • 纳米级光电阴极及生产这种光电阴极的方法
    • WO2017207898A3
    • 2018-01-25
    • PCT/FR2017051321
    • 2017-05-29
    • PHOTONIS FRANCECENTRE NAT RECH SCIENT
    • ALIBERT CLAUDECONDE MOUSTAPHAHARMAND JEAN-CHRISTOPHEJEGOREL THÉO
    • H01J9/12H01J1/34H01J40/06
    • H01J9/12H01J1/34H01J40/06
    • The invention relates to a photocathode comprising an amorphous substrate, such as a glass substrate (110), having an input face for receiving incident photons and a rear face opposite the input face. Nanowires (120) made from at least one III-V semiconductor material are deposited on the rear face of the substrate and extend from said face away from the input face. The composition of the nanowires comprises a radial variation in the proportion of the elements of the III-V material, such as to produce a forbidden band gradient from the core of the nanowires towards the periphery thereof. The invention also relates to a method for the MBE production of such a photocathode. During the nanowire growth phase, the fluxes of materials forming the III-V semiconductor material are varied such as to produce a material having a greater forbidden band at the start of the growth phase than at the end of said phase.
    • 本发明涉及一种光电阴极,其包括诸如玻璃衬底(110)的非晶衬底,其具有用于接收入射光子的输入面和与输入面相对的背面。 由至少一种III-V族半导体材料制成的纳米线(120)沉积在衬底的背面上并从所述面远离输入面延伸。 纳米线的组成包括III-V族材料的元素比例的径向变化,例如以产生从纳米线的核心向其外围的禁带梯度。 本发明还涉及用于MBE生产这种光电阴极的方法。 在纳米线生长阶段期间,形成III-V族半导体材料的材料的通量发生变化,从而产生在生长阶段开始时具有比在所述阶段结束时更大的禁带的材料。
    • 36. 发明申请
    • PHOTON ENHANCED THERMIONIC EMISSION
    • 光子增强THERMONIC排放
    • WO2010044891A3
    • 2011-04-07
    • PCT/US2009005669
    • 2009-10-19
    • UNIV LELAND STANFORD JUNIORSCHWEDE JAREDMELOSH NICHOLASSHEN ZHIXUN
    • SCHWEDE JAREDMELOSH NICHOLASSHEN ZHIXUN
    • H01J45/00H01J40/06
    • H01J40/06H01J45/00H01J2201/30434H02S99/00
    • Photon Enhanced Thermionic Emission (PETE) is exploited to provide improved efficiency for radiant energy conversion. A hot (greater than 200 0C) semiconductor cathode is illuminated such that it emits electrons. Because the cathode is hot, significantly more electrons are emitted than would be emitted from a room temperature (or colder) cathode under the same illumination conditions. As a result of this increased electron emission, the energy conversion efficiency can be significantly increased relative to a conventional photovoltaic device. In PETE, the cathode electrons can be (and typically are) thermalized with respect to the cathode. As a result, PETE does not rely on emission of non-thermalized electrons, and is significantly easier to implement than hot-carrier emission approaches.
    • 光子增强型热离子发射(PETE)被用于提高辐射能量转换的效率。 一个热(大于200℃)的半导体阴极被照亮使其发射电子。 因为阴极是热的,所以在相同的照明条件下比从室温(或较冷的)阴极发射的电子要大得多。 作为这种增加的电子发射的结果,相对于常规光伏器件,能量转换效率可以显着增加。 在PETE中,阴极电子可以(并且通常被)相对于阴极热化。 因此,PETE不依赖于非热电子发射,并且比热载流子发射方法更容易实现。