会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 32. 发明授权
    • Germanium lateral bipolar junction transistor
    • 锗横向双极结晶体管
    • US08586441B1
    • 2013-11-19
    • US13611606
    • 2012-09-12
    • Jin CaiKevin K. ChanChristopher P. D'EmicBahman HekmatshoartabariTak H. NingDae-Gyu Park
    • Jin CaiKevin K. ChanChristopher P. D'EmicBahman HekmatshoartabariTak H. NingDae-Gyu Park
    • H01L21/331
    • H01L29/6625H01L29/161H01L29/735
    • A germanium lateral bipolar junction transistor (BJT) is formed employing a germanium-on-insulator (GOI) substrate. A silicon passivation layer is deposited on the top surface of a germanium layer in the GOI substrate. Shallow trench isolation structures, an extrinsic base region structure, and a base spacer are subsequently formed. A germanium emitter region, a germanium base region, and a germanium collector region are formed within the germanium layer by ion implantation. A silicon emitter region, a silicon base region, and a silicon collector region are formed in the silicon passivation layer. After optional formation of an emitter contact region and a collector contact region, metal semiconductor alloy regions can be formed. A wide gap contact for minority carriers is provided between the silicon base region and the germanium base region and between the silicon emitter region and the germanium emitter region.
    • 使用绝缘体上的锗(GOI)衬底形成锗横向双极结型晶体管(BJT)。 在GOI衬底的锗层的顶表面上沉积硅钝化层。 随后形成浅沟槽隔离结构,非本征基区结构和基底间隔物。 通过离子注入在锗层内形成锗发射极区,锗基区和锗集电极区。 在硅钝化层中形成硅发射极区域,硅基区域和硅集电极区域。 在可选地形成发射极接触区域和集电极接触区域之后,可以形成金属半导体合金区域。 在硅基区和锗基区之间以及硅发射极区和锗发射极区之间提供少量载流子的宽间隙接触。
    • 33. 发明授权
    • Structure and method for increasing strain in a device
    • 增加器件应变的结构和方法
    • US08551845B2
    • 2013-10-08
    • US12886903
    • 2010-09-21
    • Kevin K. ChanAbhishek DubeViorel C. Ontalus
    • Kevin K. ChanAbhishek DubeViorel C. Ontalus
    • H01L21/336
    • H01L29/7847H01L21/26506H01L21/26566H01L21/26593H01L29/165H01L29/66636H01L29/78H01L29/7848
    • A method and structure are disclosed for increasing strain in a device, specifically an n-type field effect transistor (NFET) complementary metal-oxide-semiconductor (CMOS) device. Embodiments of this invention include growing an epitaxial layer, performing a cold carbon or cluster carbon pre-amorphization implantation to implant substitutional carbon into the epitaxial layer, forming a tensile cap over the epitaxial layer, and then annealing to recrystallize the amorphous layer to create a stress memorization technique (SMT) effect. The epitaxial layer will therefore include substitutional carbon and have a memorized tensile stress induced by the SMT. Embodiments of this invention can also include a lower epitaxial layer under the epitaxial layer, the lower epitaxial layer comprising for example, a silicon carbon phosphorous (SiCP) layer.
    • 公开了用于增加器件中应变的方法和结构,特别是n型场效应晶体管(NFET)互补金属氧化物半导体(CMOS)器件。 本发明的实施例包括生长外延层,进行冷碳或簇碳预非晶化注入以将取代碳注入到外延层中,在外延层上形成拉伸帽,然后退火以使非晶层重结晶以产生 应力记忆技术(SMT)效应。 因此,外延层将包括取代碳并具有由SMT引起的记忆拉伸应力。 本发明的实施例还可以包括在外延层下面的下部外延层,下部外延层包括例如硅碳磷(SiCP)层。
    • 34. 发明授权
    • Self-aligned emitter-base in advanced BiCMOS technology
    • 先进的BiCMOS技术中的自对准发射极基极
    • US08716096B2
    • 2014-05-06
    • US13323977
    • 2011-12-13
    • Kevin K. ChanDavid L. HarameRussell T. HerrinQizhi Liu
    • Kevin K. ChanDavid L. HarameRussell T. HerrinQizhi Liu
    • H01L21/331H01L21/8222
    • H01L29/737H01L21/8249H01L27/0623H01L29/66242H01L29/66272H01L29/732H01L29/7371
    • A self-aligned bipolar transistor and method of fabricating the same are disclosed. In an embodiment, a substrate and an intrinsic base are provided, followed by a first oxide layer, and an extrinsic base over the first oxide layer. A first opening is formed, exposing a portion of a surface of the extrinsic base. Sidewall spacers are formed in the first opening, and a self-aligned oxide mask is selectively formed on the exposed surface of the extrinsic base. The spacers are removed, and using the self-aligned oxide mask, the exposed extrinsic base and the first oxide layer are etched to expose the intrinsic base layer, forming a first and a second slot. A silicon layer stripe is selectively grown on the exposed intrinsic and/or extrinsic base layers in each of the first and second slots, substantially filling the respective slot.
    • 公开了一种自对准双极晶体管及其制造方法。 在一个实施例中,提供衬底和本征基极,随后是第一氧化物层,以及在第一氧化物层上的外部基极。 形成第一开口,暴露外部基底的表面的一部分。 在第一开口中形成侧壁间隔物,并且在外基的暴露表面上选择性地形成自对准氧化物掩模。 去除间隔物,并且使用自对准氧化物掩模,暴露的非本征基底和第一氧化物层被蚀刻以暴露本征基底层,形成第一和第二狭槽。 在第一和第二槽中的每一个中的暴露的本征和/或非本征基极层上选择性地生长硅层条纹,基本上填充相应的槽。
    • 37. 发明申请
    • SOI SiGe-BASE LATERAL BIPOLAR JUNCTION TRANSISTOR
    • SOI SiGe-BASE横向双极晶体管晶体管
    • US20120289018A1
    • 2012-11-15
    • US13556372
    • 2012-07-24
    • Tak H. NingKevin K. ChanMarwan H. Khater
    • Tak H. NingKevin K. ChanMarwan H. Khater
    • H01L21/331
    • H01L29/7317H01L27/0821H01L27/1203H01L29/0808H01L29/165H01L29/66265
    • A lateral heterojunction bipolar transistor (HBT) is formed on a semiconductor-on-insulator substrate. The HBT includes a base including a doped silicon-germanium alloy base region, an emitter including doped silicon and laterally contacting the base, and a collector including doped silicon and laterally contacting the base. Because the collector current is channeled through the doped silicon-germanium base region, the HBT can accommodate a greater current density than a comparable bipolar transistor employing a silicon channel. The base may also include an upper silicon base region and/or a lower silicon base region. In this case, the collector current is concentrated in the doped silicon-germanium base region, thereby minimizing noise introduced to carrier scattering at the periphery of the base. Further, parasitic capacitance is minimized because the emitter-base junction area is the same as the collector-base junction area.
    • 在绝缘体上半导体衬底上形成横向异质结双极晶体管(HBT)。 HBT包括基底,其包括掺杂的硅 - 锗合金基底区域,包括掺杂硅并且横向接触基底的发射体,以及包括掺杂硅并且横向接触基底的收集器。 因为集电极电流被引导通过掺杂的硅 - 锗基区,所以与使用硅沟道的可比较的双极晶体管相比,HBT可以容纳更大的电流密度。 基底还可以包括上硅基区和/或下硅基区。 在这种情况下,集电极电流集中在掺杂的硅 - 锗基区域中,从而最小化引入到基极周边的载流子散射的噪声。 此外,寄生电容被最小化,因为发射极 - 基极结面积与集电极 - 基极结面积相同。
    • 38. 发明授权
    • Asymmetric epitaxy and application thereof
    • 不对称外延及其应用
    • US08198673B2
    • 2012-06-12
    • US13080702
    • 2011-04-06
    • Haizhou YinXinhui WangKevin K. ChanZhibin Ren
    • Haizhou YinXinhui WangKevin K. ChanZhibin Ren
    • H01L21/00
    • H01L21/26586H01L29/66628H01L29/66636H01L29/66659H01L29/7835
    • The present invention provides a method of forming asymmetric field-effect-transistors. The method includes forming a gate structure on top of a semiconductor substrate, the gate structure including a gate stack and spacers adjacent to sidewalls of the gate stack, and having a first side and a second side opposite to the first side; performing angled ion-implantation from the first side of the gate structure in the substrate, thereby forming an ion-implanted region adjacent to the first side, wherein the gate structure prevents the angled ion-implantation from reaching the substrate adjacent to the second side of the gate structure; and performing epitaxial growth on the substrate at the first and second sides of the gate structure. As a result, epitaxial growth on the ion-implanted region is much slower than a region experiencing no ion-implantation. A source region formed to the second side of the gate structure by the epitaxial growth has a height higher than a drain region formed to the first side of the gate structure by the epitaxial growth. A semiconductor structure formed thereby is also provided.
    • 本发明提供了形成非对称场效应晶体管的方法。 该方法包括在半导体衬底的顶部上形成栅极结构,该栅极结构包括一个栅极叠层和邻近该栅极叠层的侧壁的间隔物,并具有与第一侧相对的第一侧和第二侧; 从衬底中的栅极结构的第一侧进行成角度的离子注入,从而形成与第一侧相邻的离子注入区域,其中栅极结构防止成角度的离子注入到达邻近第二侧的衬底 门结构; 以及在栅极结构的第一和第二侧在衬底上进行外延生长。 结果,在离子注入区域上的外延生长比经历无离子注入的区域慢得多。 通过外延生长形成到栅极结构的第二侧的源极区域的高度高于通过外延生长形成于栅极结构的第一侧的漏极区域的高度。 还提供了由此形成的半导体结构。
    • 40. 发明授权
    • MOSFET structure with multiple self-aligned silicide contacts
    • 具有多个自对准硅化物触点的MOSFET结构
    • US07888264B2
    • 2011-02-15
    • US12814942
    • 2010-06-14
    • Kevin K. ChanChristian LavoieKern Rim
    • Kevin K. ChanChristian LavoieKern Rim
    • H01L21/44
    • H01L29/66507H01L29/6653H01L29/7833
    • A metal oxide semiconductor field effect transistor (MOSFET) structure that includes multiple and distinct self-aligned silicide contacts and methods of fabricating the same are provided. The MOSFET structure includes at least one metal oxide semiconductor field effect transistor having a gate conductor including a gate edge located on a surface of a Si-containing substrate; a first inner silicide having an edge that is substantially aligned to the gate edge of the at least one metal oxide semiconductor field effect transistor; and a second outer silicide located adjacent to the first inner silicide. In accordance with the present invention, the second outer silicide has second thickness is greater than the first thickness of the first inner silicide. Moreover, the second outer silicide has a resistivity that is lower than the resistivity of the first inner silicide.
    • 提供了包括多个不同的自对准硅化物触点的金属氧化物半导体场效应晶体管(MOSFET)结构及其制造方法。 MOSFET结构包括至少一个金属氧化物半导体场效应晶体管,其具有包括位于含Si衬底的表面上的栅极边缘的栅极导体; 第一内部硅化物,其具有基本上与所述至少一个金属氧化物半导体场效应晶体管的栅极边缘对准的边缘; 以及位于第一内部硅化物附近的第二外部硅化物。 根据本发明,第二外部硅化物的第二厚度大于第一内部硅化物的第一厚度。 此外,第二外部硅化物的电阻率低于第一内部硅化物的电阻率。