会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 31. 发明授权
    • Process for the selective deposition of particulate material
    • 颗粒材料的选择性沉积工艺
    • US07220456B2
    • 2007-05-22
    • US10815010
    • 2004-03-31
    • Rajesh V. MehtaRamesh JagannathanSeshadri JagannathanDavid J. Nelson
    • Rajesh V. MehtaRamesh JagannathanSeshadri JagannathanDavid J. Nelson
    • B05D5/00
    • B05D1/025B05D1/12B05D2401/90
    • A process for the patterning of a desired substance on a surface includes: (i) charging a particle formation vessel with a compressed fluid; (ii) introducing into the particle formation vessel a first feed stream comprising a solvent and the desired substance dissolved therein and a second feed stream comprising the compressed fluid, wherein the desired substance is less soluble in the compressed fluid relative to its solubility in the solvent and the solvent is soluble in the compressed fluid, and wherein the first feed stream is dispersed in the compressed fluid, allowing extraction of the solvent into the compressed fluid and precipitation of particles of the desired substance; (iii) exhausting compressed fluid, solvent and the desired substance from the particle formation vessel at a rate substantially equal to a rate of addition of such components to the vessel in step (ii) through a restrictive passage to a lower pressure whereby the compressed fluid is transformed to a gaseous state, and wherein the restrictive passage includes a discharge device that produces a shaped beam of particles of the desired substance at a point beyond an outlet of the discharge device, where the fluid is in a gaseous state at a location before or beyond the outlet of the discharge device; and (iv) exposing a receiver surface to the shaped beam of particles of the desired substance and selectively depositing a pattern of particles on the receiver surface.
    • 用于在表面上图案化所需物质的方法包括:(i)用压缩流体填充颗粒形成容器; (ii)向颗粒形成容器中引入包含溶剂和所需物质溶解在其中的第一进料流和包含压缩流体的第二进料流,其中所需物质相对于其在溶剂中的溶解度较不溶于压缩流体 并且溶剂可溶于压缩流体中,并且其中第一进料流分散在压缩流体中,允许将溶剂萃取到压缩流体中并沉淀所需物质的颗粒; (iii)通过限制性通道将压缩流体,溶剂和所需物质从所述颗粒形成容器排出,其速率基本上等于在步骤(ii)中通过限制通道将这些组分添加到容器中的速率,由此压缩流体 转化为气态,并且其中限制通道包括排出装置,其在超出排放装置的出口的点处产生所需物质的成形颗粒束,其中流体在气体状态处于位于之前的位置处 或超出排出装置的出口; 和(iv)将接收器表面暴露于所需物质的成形的颗粒束并选择性地在接收器表面上沉积颗粒图案。
    • 32. 发明授权
    • Surfactant assisted nanomaterial generation process
    • 表面活性剂辅助纳米材料生成过程
    • US07276184B2
    • 2007-10-02
    • US10193363
    • 2002-07-11
    • Glen C. IrvinRamesh JagannathanSeshadri JagannathanSuresh SunderrajanDavid D. TuschelWilliam C. LenhartDavid J. Nelson
    • Glen C. IrvinRamesh JagannathanSeshadri JagannathanSuresh SunderrajanDavid D. TuschelWilliam C. LenhartDavid J. Nelson
    • B01F3/20B01J20/02
    • C09D11/30B41J2/211C09D11/36
    • A process for the preparation of nanoscale particulate material is described comprising: (i) combining one or more functional material to be precipitated as nanoscale particles and one or more surface active material in a compressed CO2 phase with a density of at least 0.1 g/cc, where the functional material is substantially insoluble in the compressed CO2 in the absence of the surfactant, the surfactant comprises a compressed CO2-philic portion and a functional material-philic portion, and the compressed CO2 phase, functional material and surfactant interact to form an aggregated system having a continuous compressed CO2 phase and a plurality of aggregates comprising surfactant and functional material molecules of average diameter less than 10 nanometers dispersed therein; and (ii) rapidly depressurizing the compressed CO2 phase thereby precipitating the dispersed functional and surfactant materials in the form of composite particles of average diameter from 0.5 to less than 10 nanometers.
    • 描述了制备纳米尺寸颗粒材料的方法,其包括:(i)将一种或多种待沉淀的功能材料作为纳米尺寸颗粒和一种或多种表面活性材料在压缩的CO 2相中组合, 密度为至少0.1g / cc,其中功能材料在不存在表面活性剂的情况下基本上不溶于压缩的CO 2,表面活性剂包括压缩的CO 2 - 亲水部分和功能材料亲水部分,并且压缩的CO 2相,功能材料和表面活性剂相互作用以形成具有连续压缩的CO 2相的聚集体系和 包含分散在其中的表面活性剂和平均直径小于10纳米的功能材料分子的多个聚集体; 和(ii)使压缩的CO 2 2相快速减压,从而将平均直径为0.5至小于10纳米的复合颗粒形式的分散的官能和表面活性剂材料沉淀。
    • 33. 发明授权
    • Self assembled organic nanocrystal superlattices
    • 自组装有机纳米晶体超晶格
    • US07097902B2
    • 2006-08-29
    • US10744539
    • 2003-12-22
    • Thomas N. BlantonRamesh JagannathanSeshadri JagannathanRajesh V. Mehta
    • Thomas N. BlantonRamesh JagannathanSeshadri JagannathanRajesh V. Mehta
    • B32B5/16
    • C30B29/54C30B29/68Y10T428/25Y10T428/258Y10T428/26Y10T428/263Y10T428/265Y10T428/268Y10T428/31504
    • A process for the preparation of a self assembled superlattice thin film of organic nanocrystal particles is described comprising: (i) combining one or more functional organic material to be precipitated as nanocrystal particles and one or more surface active material in a compressed CO2 phase with a density of at least 0.1 g/cc, where the functional material is substantially insoluble in the compressed CO2 in the absence of the surfactant, the surfactant comprises a compressed CO2-philic portion and a functional material-philic portion, and the compressed CO2 phase, functional material and surfactant interact to form an aggregated system having a continuous compressed CO2 phase and a plurality of aggregates comprising surfactant and functional material molecules of average diameter less than 50 nanometers dispersed therein; (ii) rapidly depressurizing the compressed CO2 phase thereby precipitating the dispersed functional and surfactant materials in the form of composite organic nanocrystals of average diameter less than 50 nanometers, and (iii) depositing the organic nanocrystals on a substrate surface, wherein the organic nanocrystals form a thin film having an ionic content of less than 0.001 M in equivalent sodium chloride concentration on the substrate surface, and the thin film exhibits a long range periodicity in the arrangement of the organic nanocrystals in a self assembled superlattice structure, as evidenced by x-ray diffraction.
    • 描述了制备有机纳米晶体颗粒的自组装超晶格薄膜的方法,其包括:(i)将一种或多种作为纳米晶体颗粒和一种或多种表面活性材料沉淀的官能有机材料合并在压缩的CO 密度为至少0.1g / cc的2相,其中功能材料在不存在表面活性剂的情况下基本上不溶于压缩的CO 2,表面活性剂包括压缩的CO 2, SUB> 2亲水部分和功能材料亲水部分,并且压缩的CO 2相,功能材料和表面活性剂相互作用以形成具有连续压缩CO 2的聚集体系, 包含平均直径小于50纳米的表面活性剂和功能材料分子的多个聚集体分散在其中; (ii)使压缩的CO 2相快速减压,从而使平均直径小于50纳米的复合有机纳米晶体形式的分散的功能性和表面活性剂材料沉淀,和(iii)将有机纳米晶体沉积在 衬底表面,其中有机纳米晶体形成离子含量小于0.001M的氯化钠浓度在基材表面上的薄膜,并且薄膜在有机纳米晶体在自组装中的布置方面表现出长程周期性 超晶格结构,如x射线衍射所证明的。
    • 34. 发明申请
    • Deposition of uniform layer of desired material
    • 沉积所需材料的均匀层
    • US20060275542A1
    • 2006-12-07
    • US11143180
    • 2005-06-02
    • Rajesh MehtaRamesh JagannathanBradley HoughtalingRobert LinkKelly RobinsonRoss SproutKenneth ReedAlok VermaScott MahonRobledo GutierrezThomas BlantonJill Fornalik
    • Rajesh MehtaRamesh JagannathanBradley HoughtalingRobert LinkKelly RobinsonRoss SproutKenneth ReedAlok VermaScott MahonRobledo GutierrezThomas BlantonJill Fornalik
    • B05D1/12
    • B05D1/025H01L51/0008H01L51/56
    • A process for the deposition of a thin film of a desired material on a surface comprising: (i) providing a continuous stream of amorphous solid particles of desired material suspended in at least one carrier gas, the solid particles having a volume-weighted mean particle diameter of less than 500 nm, at an average stream temperature below the glass transition temperature of the solid particles of desired material, (ii) passing the stream provided in (i) into a heating zone, and heating the stream in the heating zone to elevate the average stream temperature to above the glass transition temperature of the solid particles of desired material, wherein no substantial chemical transformation of the desired material occurs due to heating of the desired material, (iii) exhausting the heated stream from the heating zone through at least one distributing passage, at a rate substantially equal to its rate of addition to the heating zone in step (ii), wherein the carrier gas does not undergo a thermodynamic phase change upon passage through heating zone and distribution passage, and (iv) exposing a receiver surface that is at a temperature below the temperature of the heated stream to the exhausted flow of the heated stream, and depositing particles of the desired material to form a thin uniform layer of the desired material on the receiver surface.
    • 一种用于在表面上沉积所需材料的薄膜的方法,包括:(i)提供悬浮在至少一种载气中的所需材料的无定形固体颗粒的连续流,所述固体颗粒具有体积加权平均颗粒 直径小于500nm,平均流温度低于所需材料的固体颗粒的玻璃化转变温度,(ii)使(i)中提供的流进入加热区,并将加热区中的流加热至 将平均流温度提高到所需材料的固体颗粒的玻璃化转变温度以上,其中由于所需材料的加热而不会发生所需材料的实质化学转化,(iii)将加热的流从加热区排出通过 至少一个分配通道,其速率基本上等于其在步骤(ii)中加热区的加入速率,其中载气不经历 在通过加热区和分配通道的过程中,流体动力学相位变化,和(iv)使处于低于加热流的温度的温度的接收器表面暴露于经加热的流的排出的流中,并沉积所需材料的颗粒以形成 接收器表面上所需材料的薄均匀层。
    • 38. 发明授权
    • Particulate magnetic recording media having an areally controlled
recording characteristics
    • 具有受控记录特性的微粒磁记录介质
    • US4805065A
    • 1989-02-14
    • US924529
    • 1986-10-29
    • Ramesh JagannathanMatthew R. Bye
    • Ramesh JagannathanMatthew R. Bye
    • G11B5/84G11B5/858G11B5/82
    • G11B5/84G11B5/858
    • Utilizing the technique whereby particulate media electrodeposited at a critical electric field intensity has a given packing density, and when electrodeposited at a lesser electric field intensity has a lower density, the present invention teaches electrodeposition of media whose particulate packing density varies in accordance with an areally predetermined pattern. The pattern is incised in one electrode of the deposition apparatus, and the medium as deposited on the other electrode mirrors the pattern as a varying particulate packing density. The packing density varies with the electric field intensity, and the electric field varies due to the unequal interelectrode distances arising from the incisions in the electrode. The medium is then d.c. magnetized, and the density variation provides a magnetically reproducible signal in accordance with the pattern.
    • 利用以临界电场强度电沉积的微粒介质具有给定的堆积密度的技术,并且当以较小的电场强度电沉积具有较低的密度时,本发明教导了其颗粒填充密度根据内部变化的介质的电沉积 预定模式。 在沉积设备的一个电极中切割图案,并且沉积在另一个电极上的介质作为变化的颗粒填充密度反映图案。 堆积密度随着电场强度而变化,并且电场由于电极中的切口产生的电极间距离不等而变化。 培养基然后是d.c. 磁化,并且密度变化根据图案提供磁性可再现的信号。