会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 32. 发明公开
    • ADVANCED QUANTIZER
    • 高级量化
    • EP2981961A2
    • 2016-02-10
    • EP14715894.3
    • 2014-04-04
    • Dolby International AB
    • KLEJSA, JanuszVILLEMOES, LarsHEDELIN, Per
    • G10L19/035
    • G10L19/035G10L19/005G10L19/028G10L19/20
    • The present document relates an audio encoding and decoding system (referred to as an audio codec system). In particular, the present document relates to a transform-based audio codec system which is particularly well suited for voice encoding/decoding. A quantization unit (112) configured to quantize a first coefficient of a block (141) of coefficients is described. The block (141) of coefficients comprises a plurality of coefficients for a plurality of corresponding frequency bins (301). The quantization unit (112) is configured to provide a set (326, 327) of quantizers. The set (326, 327) of quantizers comprises a plurality of different quantizers (321, 322, 323) associated with a plurality of different signal-to-noise ratios, referred to as SNR, respectively. The plurality of different quantizers (321, 322, 323) includes a noise-filling quantizer (321); one or more dithered quantizers (322); and one or more undithered quantizers (323). The quantization unit (112) is further configured to determine an SNR indication indicative of a SNR attributed to the first coefficient, and to select a first quantizer from the set (326, 327) of quantizers, based on the SNR indication. In addition, the quantization unit (112) is configured to quantize the first coefficient using the first quantizer.
    • 33. 发明授权
    • EFFICIENT COMBINED HARMONIC TRANSPOSITION
    • 高效复合谐波变换
    • EP2436005B1
    • 2014-07-30
    • EP10721796.0
    • 2010-05-25
    • Dolby International AB
    • EKSTRAND, PerVILLEMOES, LarsHEDELIN, Per
    • G10L21/038
    • G10H1/0091G10H1/125G10H2210/311G10L19/265G10L21/038G10L21/0388
    • The present document relates to audio coding systems which make use of a harmonic transposition method for high frequency reconstruction (HFR), and to digital effect processors, e.g. so-called exciters, where generation of harmonic distortion adds brightness to the processed signal. In particular, a system configured to generate a high frequency component of a signal from a low frequency component of the signal is described. The system may comprise an analysis filter bank (501) configured to provide a set of analysis subband signals from the low frequency component of the signal; wherein the set of analysis subband signals comprises at least two analysis subband signals; wherein the analysis filter bank (501) has a frequency resolution of ” f . The system further comprises a nonlinear processing unit (502) configured to determine a set of synthesis subband signals from the set of analysis subband signals using a transposition order P ; wherein the set of synthesis subband signals comprises a portion of the set of analysis subband signals phase shifted by an amount derived from the transposition order P ; and a synthesis filter bank (504) configured to generate the high frequency component of the signal from the set of synthesis subband signals; wherein the synthesis filter bank (504) has a frequency resolution of F ” f ; with F being a resolution factor, with F ‰¥ 1; wherein the transposition order P is different from the resolution factor F .
    • 34. 发明公开
    • EFFICIENT COMBINED HARMONIC TRANSPOSITION
    • EP4404195A3
    • 2024-08-14
    • EP24180306.3
    • 2010-05-25
    • Dolby International AB
    • EKSTRAND, PerVILLEMOES, LarsHEDELIN, Per
    • G10L21/038G10L21/0388
    • G10L21/038G10L21/0388
    • The present document relates to audio coding systems which make use of a harmonic transposition method for high frequency reconstruction (HFR), and to digital effect processors, e.g. so-called exciters, where generation of harmonic distortion adds brightness to the processed signal. In particular, a system configured to generate a high frequency component of a signal from a low frequency component of the signal is described. The system may comprise an analysis filter bank (501) configured to provide a set of analysis subband signals from the low frequency component of the signal; wherein the set of analysis subband signals comprises at least two analysis subband signals; wherein the analysis filter bank (501) has a frequency resolution of Δf. The system further comprises a nonlinear processing unit (502) configured to determine a set of synthesis subband signals from the set of analysis subband signals using a transposition order P; wherein the set of synthesis subband signals comprises a portion of the set of analysis subband signals phase shifted by an amount derived from the transposition order P; and a synthesis filter bank (504) configured to generate the high frequency component of the signal from the set of synthesis subband signals; wherein the synthesis filter bank (504) has a frequency resolution of FΔf; with F being a resolution factor, with F ≥ 1; wherein the transposition order Pis different from the resolution factorF.
    • 37. 发明公开
    • EFFICIENT COMBINED HARMONIC TRANSPOSITION
    • EP3742442A1
    • 2020-11-25
    • EP20180778.1
    • 2010-05-25
    • Dolby International AB
    • EKSTRAND, PerVILLEMOES, LarsHEDELIN, Per
    • G10L21/038G10L21/0388
    • The present document relates to audio coding systems which make use of a harmonic transposition method for high frequency reconstruction (HFR), and to digital effect processors, e.g. so-called exciters, where generation of harmonic distortion adds brightness to the processed signal. In particular, a system configured to generate a high frequency component of a signal from a low frequency component of the signal is described. The system may comprise an analysis filter bank (501) configured to provide a set of analysis subband signals from the low frequency component of the signal; wherein the set of analysis subband signals comprises at least two analysis subband signals; wherein the analysis filter bank (501) has a frequency resolution of Δf . The system further comprises a nonlinear processing unit (502) configured to determine a set of synthesis subband signals from the set of analysis subband signals using a transposition order P ; wherein the set of synthesis subband signals comprises a portion of the set of analysis subband signals phase shifted by an amount derived from the transposition order P ; and a synthesis filter bank (504) configured to generate the high frequency component of the signal from the set of synthesis subband signals; wherein the synthesis filter bank (504) has a frequency resolution of FΔf ; with F being a resolution factor, with F ≥ 1 ; wherein the transposition order P is different from the resolution factorF.
    • 40. 发明公开
    • EFFICIENT COMBINED HARMONIC TRANSPOSITION
    • EP4293669A3
    • 2024-01-17
    • EP23202809.2
    • 2010-05-25
    • Dolby International AB
    • EKSTRAND, PerVILLEMOES, LarsHEDELIN, Per
    • G10L21/038G10L21/0388
    • The present document relates to audio coding systems which make use of a harmonic transposition method for high frequency reconstruction (HFR), and to digital effect processors, e.g. so-called exciters, where generation of harmonic distortion adds brightness to the processed signal. In particular, a system configured to generate a high frequency component of a signal from a low frequency component of the signal is described. The system may comprise an analysis filter bank (501) configured to provide a set of analysis subband signals from the low frequency component of the signal; wherein the set of analysis subband signals comprises at least two analysis subband signals; wherein the analysis filter bank (501) has a frequency resolution of Δf. The system further comprises a nonlinear processing unit (502) configured to determine a set of synthesis subband signals from the set of analysis subband signals using a transposition order P; wherein the set of synthesis subband signals comprises a portion of the set of analysis subband signals phase shifted by an amount derived from the transposition order P; and a synthesis filter bank (504) configured to generate the high frequency component of the signal from the set of synthesis subband signals; wherein the synthesis filter bank (504) has a frequency resolution of FΔf; with F being a resolution factor, with F ≥ 1; wherein the transposition order Pis different from the resolution factorF.