会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 32. 发明授权
    • Dopant diffusion-retarding barrier region formed within polysilicon gate layer
    • 在多晶硅栅极层内形成的掺杂扩散阻滞层
    • US06380055B2
    • 2002-04-30
    • US09177043
    • 1998-10-22
    • Mark I. GardnerRobert DawsonH. Jim Fulford, Jr.Frederick N. HauseMark W. MichaelBradley T. MooreDerick J. Wristers
    • Mark I. GardnerRobert DawsonH. Jim Fulford, Jr.Frederick N. HauseMark W. MichaelBradley T. MooreDerick J. Wristers
    • H01L213205
    • H01L29/4925H01L21/28035H01L21/32155
    • A diffusion-retarding barrier region is incorporated into the gate electrode to reduce the downward diffusion of dopant toward the gate dielectric. The barrier region is a nitrogen-containing diffusion retarding barrier region formed between two separately formed layers of polysilicon. The upper layer of polysilicon is doped more heavily than the lower layer of polysilicon, and the barrier region serves to keep most of the dopant within the upper layer of polysilicon, and yet may allow some of the dopant to diffuse into the lower layer of polysilicon. The barrier region may be formed, for example, by annealing the first polysilicon layer in an nitrogen-containing ambient to form a nitrided layer at the top surface of the first polysilicon layer. The barrier region may alternatively be formed by depositing a nitrogen-containing layer, such as a silicon nitride or titanium nitride layer, on the top surface of the first polysilicon layer. The thickness of the nitrogen-containing layer is preferably approximately 5-15 Å thick. Any nitrogen residing at the top of the gate dielectric may be kept to a concentration less than approximately 2%. The present invention is particularly well suited to thin gate dielectrics, such as a those having a thickness of approximately 25-60 Å, when using a p-type dopant, such as boron.
    • 扩散阻滞屏障区域被结合到栅电极中以减少掺杂剂朝向栅极电介质的向下扩散。 阻挡区域是在两个单独形成的多晶硅层之间形成的含氮扩散阻滞区域。 多晶硅的上层比多晶硅的下层掺杂更多,并且势垒区域用于将大部分掺杂剂保持在多晶硅的上层内,并且还可以允许一些掺杂剂扩散到多晶硅的下层 。 阻挡区域可以例如通过在含氮环境中退火第一多晶硅层以在第一多晶硅层的顶表面处形成氮化层而形成。 可以通过在第一多晶硅层的顶表面上沉积含氮层,例如氮化硅或氮化钛层来形成阻挡区。 含氮层的厚度优选为约5〜约厚。 驻留在栅极电介质顶部的任何氮可以保持在小于约2%的浓度。 当使用诸如硼的p型掺杂剂时,本发明特别适用于薄栅极电介质,例如厚度大约为25埃的那些。
    • 34. 发明授权
    • Method of making an IGFET with elevated source/drain regions in close proximity to gate with sloped sidewalls
    • 制造具有较高的源极/漏极区域的IGFET的方法,其紧邻具有倾斜侧壁的栅极
    • US06197645B1
    • 2001-03-06
    • US08837539
    • 1997-04-21
    • Mark W. MichaelRobert DawsonH. Jim Fulford, Jr.Mark I. GardnerFrederick N. HauseBradley T. MooreDerick J. Wristers
    • Mark W. MichaelRobert DawsonH. Jim Fulford, Jr.Mark I. GardnerFrederick N. HauseBradley T. MooreDerick J. Wristers
    • H01L21336
    • H01L29/66575H01L29/41775H01L29/41783H01L29/42376
    • An IGFET with elevated source and drain regions in close proximity to a gate with sloped sidewalls is disclosed. A method of making the IGFET includes forming a lower gate level over a semiconductor substrate, wherein the lower gate level includes a top surface, a bottom surface and sloped opposing sidewalls, and the top surface has a substantially greater length than the bottom surface, and depositing a semiconducting layer on the lower gate level and on underlying source and drain regions of the semiconductor substrate to form an upper gate level on the lower gate level, an elevated source region on the underlying source region, and an elevated drain region on the underlying drain region. The elevated source and drain regions are separated from the lower gate level due to a retrograde slope of the sidewalls of the lower gate level, and the elevated source and drain regions are separated from the upper gate level due to a lack of step coverage in the semiconducting layer. The method also includes implanting a dopant into the elevated source and drain regions, and diffusing the dopant from the elevated source and drain regions into the underlying source and drain regions. Preferably, the semiconducting layer is deposited by epitaxial deposition, the lower gate level is substantially thicker than the semiconducting layer, the elevated source and drain regions include sidewalls beneath and substantially aligned with sidewalls of the upper gate level, and all source/drain doping in the underlying source and drain regions is diffused from the elevated source and drain regions. In this manner, a highly miniaturized IGFET can be provided with shallow channel junctions without the need for sidewall spacers adjacent to the gate.
    • 公开了一种IGFET,其具有与具有倾斜侧壁的栅极紧密相邻的源极和漏极区域。 制造IGFET的方法包括在半导体衬底上形成较低的栅极电平,其中下部栅极级别包括顶部表面,底部表面和倾斜的相对侧壁,并且顶部表面具有比底部表面大得多的长度,以及 在半导体衬底的下栅极电平和下面的源极和漏极区域上沉积半导体层以在下部栅极电平上形成上部栅极电平,在下部源极区域上形成升高的源极区域,以及在下部栅极 漏区。 由于下栅极电平的侧壁的逆向斜率,升高的源极和漏极区域与下部栅极电平分离,并且由于在栅极栅极电平上缺乏阶跃覆盖,升高的源极和漏极区域与上部栅极电平分离 半导体层。 该方法还包括将掺杂剂注入到升高的源极和漏极区域中,并且将掺杂剂从升高的源极和漏极区域扩散到下面的源极和漏极区域中。 优选地,半导体层通过外延沉积沉积,下栅极电平基本上比半导电层更厚,升高的源极和漏极区域包括在上部栅极电平的侧壁下面并基本对齐的侧壁,并且所有源极/漏极掺杂 底层源极和漏极区域从升高的源极和漏极区域扩散。 以这种方式,高度小型化的IGFET可以设置有浅沟道结,而不需要邻近门的侧壁间隔。
    • 36. 发明授权
    • Semiconductor fabrication method of forming a master layer to combine
individually printed blocks of a circuit pattern
    • 形成主层以组合电路图案的单独打印块的半导体制造方法
    • US5837557A
    • 1998-11-17
    • US818478
    • 1997-03-14
    • H. Jim Fulford, Jr.Robert DawsonMark I. GardnerFrederick N. HauseMark W. MichaelBradley T. MooreDerick J. Wristers
    • H. Jim Fulford, Jr.Robert DawsonMark I. GardnerFrederick N. HauseMark W. MichaelBradley T. MooreDerick J. Wristers
    • H01L21/78H01L21/82
    • H01L21/0274H01L21/76838H01L21/76895H01L21/823871
    • Each circuit block of a plurality of circuit blocks on a semiconductor substrate is imaged in an exposure field defined by a reticle. The circuit blocks are separated and electrically isolated within the semiconductor substrate by an isolation such as a field oxide or trench isolation. The circuit blocks are globally interconnected by depositing a blanket metal layer, masking the metal layer and etching the metal layer using a stitching reticle having an exposure field overlapping the plurality of circuit blocks. The combination of reticle-imaged circuit blocks allows each individual circuit block to be fabricated independently, using independent imaging resolution, layout rules, design rules, different polysilicon sizes and source/drain region sizes and the like. In addition different reticles, including different reticle types, resolutions and qualities may be used to construct the various circuit blocks. Different imaging technologies may be used to construct the independent circuit blocks, including X-ray, I-line, H-line, ion-beam and electron-beam irradiation, for example. While the different circuit blocks are independently constructed, the circuit blocks are globally interconnected using the blanket metal layer so that overall circuit size is reduced, circuit quality is enhanced, fabrication time and costs are reduced, and performance is increased. A plurality of integrated chip sets, including microprocessor, memory, and support chips, are constructed on a single semiconductor wafer using separate reticle imaging of each of the plurality of integrated chip sets. The different circuits are globally interconnected using a blanket metal layer that is imaged using a stitch mask and etch operation that combines and electrically connects the individual integrated chips.
    • 在半导体衬底上的多个电路块的每个电路块在由光罩定义的曝光场中成像。 电路块通过诸如场氧化物或沟槽隔离的隔离在半导体衬底内分离和电隔离。 电路块通过沉积橡皮布金属层,掩蔽金属层和使用具有与多个电路块重叠的曝光场的缝合掩模版蚀刻金属层而全局互连。 标线片成像电路块的组合允许使用独立的成像分辨率,布局规则,设计规则,不同的多晶硅尺寸和源极/漏极区域尺寸等来独立地制造每个单独的电路块。 此外,可以使用不同的标线片,包括不同的标线片类型,分辨率和质量来构造各种电路块。 例如,可以使用不同的成像技术来构建独立的电路块,包括X射线,I线,H线,离子束和电子束照射。 虽然不同的电路块是独立构造的,但电路块使用橡皮布金属层进行全局互连,从而减小了整体电路尺寸,提高了电路质量,降低了制造时间和成本,并提高了性能。 使用多个集成芯片组中的每一个的单独的掩模版成像,在单个半导体晶片上构造包括微处理器,存储器和支持芯片的多个集成芯片组。 不同的电路通过使用缝合掩模成像的覆盖金属层和组合并电连接各个集成芯片的蚀刻操作来全局互连。
    • 40. 发明授权
    • Integrated circuit gate conductor which uses layered spacers to produce
a graded junction
    • 集成电路栅极导体,其使用分层间隔物来产生分级结
    • US5847428A
    • 1998-12-08
    • US761132
    • 1996-12-06
    • H. Jim Fulford, Jr.Mark I. GardnerDerick J. Wristers
    • H. Jim Fulford, Jr.Mark I. GardnerDerick J. Wristers
    • H01L21/336H01L29/78
    • H01L29/6659H01L29/665H01L29/6656H01L29/7833Y10S257/90
    • A transistor is provided with a graded source/drain junction. At least two dielectric spacers are formed in sequence upon the gate conductor. Adjacent dielectric spacers have dissimilar etch characteristics. An ion implant follows the formation of at least two of the dielectric spacers to introduce dopants into the source/drain region of the transistor. The ion implants are placed in different positions a spaced distance from the gate conductor according to a thickness of the dielectric spacers. As the implants are introduced further from the channel, the implant dosage and energy is increased. In a second embodiment, the ion implants are performed in reverse order. The dielectric spacers pre-exist on the sidewall surfaces of the gate conductor. The spacers are sequentially removed followed by an ion implant. An etchant is used which attacks the spacer to be removed but not the spacer beneath to the one being removed. Each time, the implants are performed with a lower energy and with a lower dosage so as to grade the junction with lighter concentrations and energies as the implant areas approach the channel. Reversing the implantation process enables high-temperature thermal anneals required for high-concentration low-diffusivity dopants to be performed first. The LDD implant comprises dopants of lower concentration and higher diffusivity requiring lower temperature anneals. Performing lower temperature anneals later in the sequence affords a lessened opportunity for undesirable short-channel effects.
    • 晶体管具有渐变源极/漏极结。 在栅极导体上依次形成至少两个电介质间隔物。 相邻的电介质间隔物具有不同的蚀刻特性。 离子注入沿着至少两个电介质间隔物的形成,以将掺杂剂引入到晶体管的源极/漏极区域中。 离子植入物根据电介质间隔物的厚度被放置在与栅极导体间隔距离的不同位置。 随着植入物从通道进一步引入,植入物剂量和能量增加。 在第二实施例中,以相反的顺序执行离子注入。 电介质垫片预先存在于栅极导体的侧壁表面上。 依次移除间隔物,然后离子注入。 使用蚀刻剂来攻击待移除的间隔物,而不是将垫片下移到被去除的间隔物。 每次,植入物以较低的能量和较低的剂量进行,以便随着植入区域接近通道而将结点分级为较轻的浓度和能量。 倒置注入工艺可以实现高浓度低扩散性掺杂剂首先要求的高温热退火。 LDD植入物包含较低浓度和较高扩散系数的掺杂剂,需要较低的温度退火。 在该顺序的稍后进行较低的温度退火可以减少不期望的短通道效应的机会。