会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 21. 发明授权
    • Capping technique for zone-melting recrystallization of insulated
semiconductor films
    • 绝缘半导体膜的区域熔融再结晶封盖技术
    • US5066610A
    • 1991-11-19
    • US410921
    • 1989-09-22
    • Chenson K. ChenBor-Yeu Tsaur
    • Chenson K. ChenBor-Yeu Tsaur
    • C30B13/00H01L21/20
    • H01L21/2022C30B13/00C30B29/60Y10S117/906Y10S148/003Y10S148/015Y10S148/071Y10S148/074Y10S148/152Y10S148/154Y10S438/909
    • Wetting of encapsulated silicon-on-insulator (SOI) films during a zone-melting recrystallization (ZMR) process is enhanced by a high temperature anneal of the SOI structure in a reactive nitrogen-containing ambient to introduce nitrogen atoms to the polysilicon/silicon dioxide cap interface. The technique is not only more effective in present in cap fracture and enhancing crystal quality but is also susceptible to batch processing with noncritical parameters in a highly efficient, uniform manner. Preferably, the cap is exposed to 100% ammonia at 1100.degree. C. for one to three hours followed by a pure oxygen purge for twenty minutes. The ammonia atmosphere is reintroduced at the same temperature for another one to three hour period before ZMR. The process is believed to result in less than a half monolayer of nitrogen at the interior cap interface thereby significantly lowering the contact angle and improving the wetting character of the SOI structure.
    • 在区域熔融重结晶(ZMR)工艺中封装的绝缘体上硅(SOI)膜的润湿通过SOI反应性含氮环境中的SOI结构的高温退火而增强,以将氮原子引入多晶硅/二氧化硅 帽接口。 该技术不仅在目前的盖断裂和提高晶体质量方面更有效,而且还以高效,均匀的方式以非关键参数进行批处理。 优选地,将盖子在1100℃下暴露于100%氨,持续1至3小时,然后用纯氧气吹扫20分钟。 在ZMR之前,将氨气体在相同的温度下重新引入另外一至三个小时。 认为该过程在内盖界面处导致小于半单位的氮,从而显着降低接触角并改善SOI结构的润湿特性。
    • 24. 发明授权
    • Growth of polycrystalline semiconductor film with intermetallic
nucleating layer
    • 具有金属间成核层的多晶半导体膜的生长
    • US4132571A
    • 1979-01-02
    • US765497
    • 1977-02-03
    • Jerome J. CuomoThomas H. DiStefanoRobert Rosenberg
    • Jerome J. CuomoThomas H. DiStefanoRobert Rosenberg
    • C23C14/02C23C16/00C30B11/12C30B23/02C30B25/02C30B25/18B01J17/26
    • C30B29/06C23C14/02C23C16/003C30B11/12C30B23/02C30B25/18Y10S148/061Y10S148/154
    • A method is disclosed for fabricating a thin elemental semiconductor, e.g., Si or Ge, film with columnar grains in a filamentary structure, by the use of an intermetallic compound incorporating the elemental semiconductor to form a nucleating layer for the growth of the semiconducting film. The semiconductor is grown from vapor phase by the technique of either vacuum evaporation or chemical vapor deposition, e.g., by decomposition of SiH.sub.4. The semiconductor e.g., Si, is initially deposited onto a thin film of a specific metal, e.g., Pt or Ni, on any inert substrate, e.g., SiO.sub.2 or Al.sub.2 O.sub.3, which is held at a temperature, e.g., 900.degree. C, above the eutectic point, i.e., 830.degree. C, of an intermetallic compound and the metallic film, and below the eutectic point, i.e., 979.degree. C, of another intermetallic compound and the semiconductor.Deposition of the semiconductor onto the metallic film produces a layer of liquid comprising the semiconductor and metal, which increases in thickness until the metallic layer is completely consumed. Additional deposition of the semiconductor produces a supersaturated liquid from which large crystallites of the intermetallic precipitate. With increasing deposition of semiconductor, the crystallites of intermetallic material continue to grow until they consume all of the metal in the liquid, at which point no liquid remains. Continuing deposition of semiconductor material results in the growth of filamentary crystallites of the semiconductor out of the intermetallic surface. The result is a columnar film of the semiconductor with a filamentary structure originating from the crystallites of intermetallic nucleating material.
    • 公开了通过使用掺入元素半导体的金属间化合物形成用于半导体膜的生长的成核层来制造薄元素半导体的方法,例如具有丝状结构的柱状晶粒的Si或Ge薄膜。 通过真空蒸发或化学气相沉积的技术,例如通过SiH 4的分解,从气相生长半导体。 半导体例如Si最初沉积在特定金属(例如Pt或Ni)的薄膜上,任何惰性基底上,例如SiO 2或Al 2 O 3,其保持在例如900℃以上的温度 共晶点,即830℃的金属间化合物和金属膜,低于另一种金属间化合物和半导体的共晶点,即979℃。