会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 21. 发明申请
    • FLEXIBLE FIBER TO WAFER INTERFACE
    • 柔性纤维到波形界面
    • US20130251305A1
    • 2013-09-26
    • US13453027
    • 2012-04-23
    • Tymon BarwiczHidetoshi NumataYoichi Taira
    • Tymon BarwiczHidetoshi NumataYoichi Taira
    • G02B6/12
    • G02B6/305G02B6/3885G02B2006/12173G02B2006/12176G02B2006/1219
    • A fiber to wafer interface system includes an interface device comprising a flexible substrate portion, a flexible cladding portion arranged on the substrate portion, a flexible single-mode waveguide portion arranged on the cladding portion including a substantially optically transparent material, a connector portion engaging a first distal end of the flexible substrate portion, the connector portion operative to engage a portion of an optical fiber ferrule, a wafer portion comprising a single mode waveguide portion arranged on a portion of the wafer, an adhesive disposed between a portion of the single mode waveguide portion of the body portion and the single mode waveguide portion of the wafer portion, the adhesive securing the body portion to the wafer portion.
    • 光纤到晶片接口系统包括:接口装置,包括柔性基板部分,布置在基板部分上的柔性包层部分,布置在包括基本上光学透明材料的包层部分上的柔性单模波导部分, 柔性基板部分的第一远端,连接器部分可操作以接合光纤套圈的一部分,晶片部分包括布置在晶片的一部分上的单模波导部分,粘合剂设置在单模 主体部分的波导部分和晶片部分的单模波导部分,将本体部分固定到晶片部分上的粘合剂。
    • 24. 发明授权
    • Semiconductor nanowires having mobility-optimized orientations
    • 具有移动性优化取向的半导体纳米线
    • US08299565B2
    • 2012-10-30
    • US13075551
    • 2011-03-30
    • Lidija SekaricTymon BarwiczDureseti Chidambarrao
    • Lidija SekaricTymon BarwiczDureseti Chidambarrao
    • H01L29/00
    • H01L29/0665B82Y10/00B82Y30/00H01L29/0673H01L29/125H01L29/42392H01L29/78696
    • Prototype semiconductor structures each including a semiconductor link portion and two adjoined pad portions are formed by lithographic patterning of a semiconductor layer on a dielectric material layer. The sidewalls of the semiconductor link portions are oriented to maximize hole mobility for a first-type semiconductor structures, and to maximize electron mobility for a second-type semiconductor structures. Thinning by oxidation of the semiconductor structures reduces the width of the semiconductor link portions at different rates for different crystallographic orientations. The widths of the semiconductor link portions are predetermined so that the different amount of thinning on the sidewalls of the semiconductor link portions result in target sublithographic dimensions for the resulting semiconductor nanowires after thinning. By compensating for different thinning rates for different crystallographic surfaces, semiconductor nanowires having optimal sublithographic widths may be formed for different crystallographic orientations without excessive thinning or insufficient thinning.
    • 通过在电介质材料层上的半导体层进行平版印刷图案,形成各自包括半导体连接部分和两个邻接焊盘部分的原型半导体结构。 半导体连接部分的侧壁被定向为使第一类型半导体结构的空穴迁移率最大化,并使第二类型半导体结构的电子迁移率最大化。 通过半导体结构的氧化来减薄半导体连接部分的宽度,以不同的速率降低不同的晶体取向。 半导体连接部分的宽度是预定的,使得在半导体连接部分的侧壁上的不同量的薄化导致在变薄后得到的半导体纳米线的目标亚光刻尺寸。 通过补偿不同晶面的不同稀释速率,可以为不同的晶体取向形成具有最佳亚光刻宽度的半导体纳米线,而不会过度稀化或不充分变薄。
    • 28. 发明申请
    • SEMICONDUCTOR NANOWIRES HAVING MOBILITY-OPTIMIZED ORIENTATIONS
    • 具有移动优化方位的半导体纳米级
    • US20100252814A1
    • 2010-10-07
    • US12417796
    • 2009-04-03
    • Lidija SekaricTymon BarwiczDureseti Chidambarrao
    • Lidija SekaricTymon BarwiczDureseti Chidambarrao
    • H01L29/12H01L21/782
    • H01L29/0665B82Y10/00B82Y30/00H01L29/0673H01L29/125H01L29/42392H01L29/78696
    • Prototype semiconductor structures each including a semiconductor link portion and two adjoined pad portions are formed by lithographic patterning of a semiconductor layer on a dielectric material layer. The sidewalls of the semiconductor link portions are oriented to maximize hole mobility for a first-type semiconductor structures, and to maximize electron mobility for a second-type semiconductor structures. Thinning by oxidation of the semiconductor structures reduces the width of the semiconductor link portions at different rates for different crystallographic orientations. The widths of the semiconductor link portions are predetermined so that the different amount of thinning on the sidewalls of the semiconductor link portions result in target sublithographic dimensions for the resulting semiconductor nanowires after thinning. By compensating for different thinning rates for different crystallographic surfaces, semiconductor nanowires having optimal sublithographic widths may be formed for different crystallographic orientations without excessive thinning or insufficient thinning.
    • 通过在电介质材料层上的半导体层进行平版印刷图案,形成各自包括半导体连接部分和两个邻接焊盘部分的原型半导体结构。 半导体连接部分的侧壁被定向为使第一类型半导体结构的空穴迁移率最大化,并使第二类型半导体结构的电子迁移率最大化。 通过半导体结构的氧化来减薄半导体连接部分的宽度,以不同的速率降低不同的晶体取向。 半导体连接部分的宽度是预定的,使得在半导体连接部分的侧壁上的不同量的薄化导致在变薄后得到的半导体纳米线的目标亚光刻尺寸。 通过补偿不同晶面的不同稀释速率,可以为不同的晶体取向形成具有最佳亚光刻宽度的半导体纳米线,而不会过度稀化或不充分变薄。