会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 21. 发明专利
    • Garnet-type lithium ion-conducting oxide and method for producing the same
    • GARNET型锂离子导电氧化物及其生产方法
    • JP2012031025A
    • 2012-02-16
    • JP2010173392
    • 2010-08-02
    • Toyota Central R&D Labs Inc株式会社豊田中央研究所
    • SAWADA HIROSHIOTA SHINGOMATSUO HIDEHITOASAOKA MASAHIKOKOSAKA SATORUKISHIDA YOSHIHIRO
    • C01G33/00H01B1/06H01B1/08H01B13/00H01M10/0562
    • Y02E60/12
    • PROBLEM TO BE SOLVED: To provide a garnet-type lithium ion-conducting oxide which has high conductivity and has a small rate of change of conductivity against temperature.SOLUTION: The garnet-type lithium ion-conducting oxide includes aluminum in a skeleton represented by LiLn(MM)O(wherein Ln is one or more sorts of elements selected from the group consisting of La, Pr, Nd, etc., Mis one or more sorts of elements selected from the group consisting of Si, Sc, Ti, V, Ga, Ge, Y, Zr, Nb, In, Sb, Te, Hf, Ta, W, and Bi, Mis an element different from Mand one or more sorts of elements selected from the group consisting of Sc, Ti, V, Y, Nb, Hf, Ta, Si, Ga and Ge, x is a number which satisfies 3≤x≤8, y and z are numbers which satisfy y>0, z≥0, 1.9≤y+z≤2.1, and t is a number which satisfies 11≤t≤13).
    • 要解决的问题:提供一种具有高导电性并且具有小的温度变化率的石榴石型锂离子传导性氧化物。 石榴石型锂离子传导性氧化物包括由Li 3 表示的骨架中的铝(SB 1 y M 2 z )其中Ln是从由La,Pr,Nd等组成的组中选择的一种或多种元素,M 1 是从由Si,Sc,Ti,V,Ga,Ge,Y,Zr,Nb,In,Sb,Te,Hf,Ta,W组成的组中选择的一种或多种元素 ,并且Bi,M 2 是与M 1 不同的元素,以及从以下组成的组中选择的一种或多种元素: Sc,Ti,V,Y,Nb,Hf,Ta,Si,Ga和Ge,x是满足3≤x≤8的数,y和z是满足y> 0,z≥0,1.9≤y +z≤2.1,t为满足11≤t≤13的数)。 版权所有(C)2012,JPO&INPIT
    • 22. 发明专利
    • Garnet-type lithium ion-conducting oxide
    • GARNET型锂离子导电氧化物
    • JP2010202499A
    • 2010-09-16
    • JP2010014341
    • 2010-01-26
    • Toyota Central R&D Labs Inc株式会社豊田中央研究所
    • OTA SHINGOKOBAYASHI TETSUOASAOKA MASAHIKO
    • C01G33/00C01G25/00H01M10/0562
    • Y02E60/12
    • PROBLEM TO BE SOLVED: To provide a garnet-type lithium ion-conducting oxide which is a garnet type oxide having high chemical stability and a wide potential window and further high conductivity. SOLUTION: The garnet-type lithium ion-conducting oxide is one represented by a formula Li 5+X La 3 (Zr X , A 2-X )O 12 , (in the formula, A is at least one selected from the group consisting of Sc, Ti, V, Y, Nb, Hf, Ta, Al, Si, Ga, Ge, and Sn and X satisfies the inequality 1.4≤X 7 La 3 Zr 2 O 12 , and when the intensity of (220) diffraction peak in an X-ray diffraction (XRD) pattern is normalized to 1, the normalized intensity in the (024) diffraction peak is 9.2 or more. COPYRIGHT: (C)2010,JPO&INPIT
    • 要解决的问题:提供石榴石型锂离子传导性氧化物,其是具有高化学稳定性和宽电势窗口以及更高导电性的石榴石型氧化物。 石榴石型锂离子传导性氧化物是由式Li(SB)5 + X La (Zr X (式中,A为选自Sc,Ti,V,Y,Nb,Hf中的至少一种),(式中,A为选自Sc,Ti,V,Y,Nb,Hf ,Ta,Al,Si,Ga,Ge,Sn和X满足不等式1.4≤X<2)。 第二种石榴石型锂离子传导性氧化物是通过将具有与Zr不同的离子半径的元素替换为组成式Li SB <3> / 当X射线衍射(XRD)图谱中的(220)衍射峰的强度归一化为1时,归一化强度为 (024)衍射峰为9.2以上。 版权所有(C)2010,JPO&INPIT
    • 24. 发明专利
    • Garnet type ionic conductivity oxide and manufacturing method of the same
    • GARNET型离子电导率氧化物及其制造方法
    • JP2013032259A
    • 2013-02-14
    • JP2011269244
    • 2011-12-08
    • Toyota Central R&D Labs Inc株式会社豊田中央研究所
    • KIHIRA YUKIOTA SHINGOASAOKA MASAHIKO
    • C04B35/48C01G25/00C04B35/50H01B1/06H01B13/00H01M10/0562
    • Y02E60/12
    • PROBLEM TO BE SOLVED: To provide a garnet type ionic conductivity oxide in which the decrease in conductivity is suppressed as much as possible, and the firing energy is made to decrease more.SOLUTION: The garnet type ionic conductivity oxide includes Li, La, and Zr, an element A that is an element different from La, and is at least one kind of an alkaline earth metal and a lanthanoid element, and an element B that is an element different from Zr, and is at least one kind of a transition element and a typical element belonging to Group 12- Group 15 that can take six coordinations with oxygen. Moreover, the garnet type ionic conductivity oxide may be shown by a basic composition LiLaSrZrNbO, in the formula, X satisfies X=24-3×a-2×b and (0
    • 要解决的问题:提供尽可能多地抑制导电性降低的石榴石型离子导电氧化物,并且使烧成能量进一步降低。 解决方案:石榴石型离子导电氧化物包括Li,La和Zr,元素A是不同于La的元素,并且是至少一种碱土金属和镧系元素,元素B 这是不同于Zr的元素,并且是至少一种过渡元素和属于可以与氧进行六次配位的第12-组15的典型元素。 此外,石榴石型离子导电性氧化物可以用基本组成表示: La 3-Y Sr Y Zr 2-Z O Z / SB>中,当(La Sr Y )假定为a,并且(Zr 2-Z )的平均化合价 Nb Z )假设为b。 版权所有(C)2013,JPO&INPIT
    • 25. 发明专利
    • Carbon dioxide-absorbing material
    • 二氧化碳吸收材料
    • JP2011147875A
    • 2011-08-04
    • JP2010010688
    • 2010-01-21
    • Toyota Central R&D Labs Inc株式会社豊田中央研究所
    • OTA SHINGOKOBAYASHI TETSUOASAOKA MASAHIKO
    • B01J20/04B01J20/08B01J20/10C01G33/00C01G35/00
    • PROBLEM TO BE SOLVED: To remove CO
      2 that is once absorbed at a temperature lower than a conventional lithium composite oxide, e.g. at a low energy thereof.
      SOLUTION: TG measurement is performed using the powder of Li
      6.75 La
      3 Zr
      1.75 Nb
      0.25 O
      12 . The TG measurement is conducted in the conditions of an air atmosphere, a rising temperature rate of 5°C/min, a measurement temperature area of room temperature to 800°C, and the absorbed amount of CO
      2 (concentration: about 300 ppm) in the air atmosphere and the removal temperature of CO
      2 are measured. As a result, the Li
      6.75 La
      3 Zr
      1.75 Nb
      0.25 O
      12 shows an increase in weight accompanying the absorption of CO
      2 in the rising temperature step up to 360°C from room temperature, and while in a temperature area of 400°C or higher, CO
      2 is removed as the temperature rises and the absorption amount is decreased, and it returns to the initial value at about 660°C.
      COPYRIGHT: (C)2011,JPO&INPIT
    • 要解决的问题:去除在比常规的锂复合氧化物低的温度下吸收的CO 2 。 在其低能量下。

      解决方案:使用Li 6.75 3 1.75 0.25 0.25 的粉末进行TG测量 12 。 TG测定在空气气氛,上升温度5℃/分钟,室温〜800℃的测定温度范围,CO 2 的吸收量的条件下进行, (浓度:约300ppm)和CO 2 的去除温度。 其结果是,在实施例1中,使用Li 6.75 在从室温升至360℃的升温温度下伴随着CO 2 的吸收而增加的重量,而在400℃或更高的温度区域中,CO 2 当温度升高并且吸收量降低时,除去,并且在约660℃下返回到初始值。 版权所有(C)2011,JPO&INPIT

    • 26. 发明专利
    • Lithium secondary battery
    • 锂二次电池
    • JP2011113655A
    • 2011-06-09
    • JP2009266293
    • 2009-11-24
    • Toyota Central R&D Labs Inc株式会社豊田中央研究所
    • SAWADA HIROSHIOTA SHINGOMATSUO HIDEHITOKOBAYASHI TETSUOASAOKA MASAHIKO
    • H01M10/052H01M2/16H01M4/13H01M4/62H01M10/0567
    • Y02E60/122
    • PROBLEM TO BE SOLVED: To further increase cycle characteristics and thermal stability of a lithium secondary battery. SOLUTION: The lithium secondary battery 10 includes a positive electrode sheet 13 having a positive electrode active material 12a, a negative electrode sheet 18 having a negative electrode active material, and a nonaqueous electrolyte 20 interposed between the positive electrode sheet 13 and the negative electrode sheet 18 to conduct lithium. In the lithium secondary battery 10, the positive electrode active material 12a and a lithium ion conducting garnet type oxide 12b are contained in the positive electrode sheet 13. The garnet type oxide may be expressed by a composition formula Li 5+X La 3 (Zr X ,A 2-X )O 12 (wherein A is one or more elements selected from the group of Sc, Ti, V, Y, Nb, Hf, Ta, Al, Si, Ga and Ge, and X is 1.4≤X COPYRIGHT: (C)2011,JPO&INPIT
    • 要解决的问题:进一步增加锂二次电池的循环特性和热稳定性。 解决方案:锂二次电池10包括具有正极活性物质12a的正极片13,具有负极活性物质的负极片18和置于正电极片13与正电极片13之间的非水电解质20。 负极片18进行锂化。 在锂二次电池10中,正极片13中含有正极活性物质12a和锂离子传导性石榴石型氧化物12b。石榴石型氧化物可以由组成式Li <5> / SB> La SB 3(Zr SB),A SB SB 2 X X SB)(其中A是一个或者多个) 选自Sc,Ti,V,Y,Nb,Hf,Ta,Al,Si,Ga和Ge中的更多元素,X为1.4≤X<2)。 石榴石型氧化物12b可以存在于正极,负极和电解质中的至少一种以上。 版权所有(C)2011,JPO&INPIT
    • 27. 发明专利
    • All-solid type lithium secondary battery
    • 全固态锂二次电池
    • JP2011070939A
    • 2011-04-07
    • JP2009221140
    • 2009-09-25
    • Toyota Central R&D Labs Inc株式会社豊田中央研究所
    • OTA SHINGOKOBAYASHI TETSUOASAOKA MASAHIKO
    • H01M10/0562H01M4/40H01M10/052
    • Y02E60/122Y02T10/7011
    • PROBLEM TO BE SOLVED: To provide an all-solid type lithium secondary battery which excels in chemical stability and has a large potential window and can, further, enhance lithium ionic conductivity and can reduce the interface resistance between a solid electrolyte and a negative electrode. SOLUTION: The all-solid type lithium secondary battery adopts a new garnet-type oxide as a solid electrolyte, and has the negative elctrode, including a lithium alloy which contains at least 1 or larger designated elements from among Mg, Al, Si, In, Ag, and Sn. The garnet type oxide is represented either with a composition formula of Li 5+X La 3 (Zr X' A 2-X )O 12 (in the formula, A is one kind or more elements selected from among a group of Sc, Ti, V, Y, Nb, Hf, Ta, Al, Si, Ga, and Ge, and X has a relation: 1.4≤X 7 La 3 Zr 2 O 12 replaced by an element having an ionic radius different from that of Zr. The intensity after standardizing the (024) diffraction is 9.2 or more, when the intensity of the (220) diffraction in XRD is normalized to 1. COPYRIGHT: (C)2011,JPO&INPIT
    • 解决的问题:为了提供化学稳定性优异且具有大的电势窗的全固体型锂二次电池,并且还可以进一步提高锂离子电导率,并且可以降低固体电解质和固体电解质之间的界面电阻 负极。 解决方案:全固态锂二次电池采用新的石榴石型氧化物作为固体电解质,并具有负电极,包括含有至少1个以上Mg,Al, Si,In,Ag和Sn。 石榴石型氧化物用组合式Li 3 / X 3 X SB 3 X-X 3 X-X 3表示, (式中,A是选自Sc,Ti,V,Y,Nb,Hf,Ta,Al,Si中的一种以上的元素, Ga和Ge,X的关系为1.4≤X<2),或者是石榴石型氧化物,其中组成式为Li <7> La < /具有不同于Zr的离子半径的元素代替Zr / SB 2。 (024)衍射标准化后的强度为9.2以上,当XRD中的(220)衍射的强度归一化为1.版权所有(C)2011,JPO&INPIT
    • 28. 发明专利
    • Lithium content garnet type oxide, lithium secondary cell, and method for manufacturing solid electrolyte
    • 锂含量GARNET型氧化物,锂二次电池和制造固体电解质的方法
    • JP2010102929A
    • 2010-05-06
    • JP2008272985
    • 2008-10-23
    • Toyota Central R&D Labs Inc株式会社豊田中央研究所
    • OTA SHINGOKOBAYASHI TETSUOASAOKA MASAHIKO
    • H01M10/0562C01G25/00C01G33/00H01B1/06H01B13/00H01M10/052
    • Y02P70/54
    • PROBLEM TO BE SOLVED: To provide a method for manufacturing a lithium containing garnet type oxide and a lithium secondary battery having higher battery performance, and a method for manufacturing a solid electrolyte. SOLUTION: In the method for manufacturing the solid electrolyte, inorganic materials (for example, Li 2 CO 3 ) in which a gas is formed by calcining them at a prescribed temperature are mixed and crushed in a solvent, the mixed inorganic materials are temporarily calcined at a temporary calcination temperature higher than a prescribed temperature and lower than a molding-calcination temperature to calcine them after molding, a prescribed additive amount of the inorganic materials are added to the calcined material and mixed and crushed in the solvent, the material to which the inorganic materials are added is temporarily calcined further at the temporary calcination temperature, and the material temporarily recalcined without inputting it into the solvent is molded to a molding body and calcined at the molding-calcination temperature. Thus, in the molding and calcination, volume change or the like is smaller and composition drift is suppressed further. For that reason, the solid electrolyte obtained by this method shows high relative density and conductivity. COPYRIGHT: (C)2010,JPO&INPIT
    • 要解决的问题:提供一种具有较高电池性能的含锂的石榴石型氧化物和锂二次电池的制造方法以及固体电解质的制造方法。 解决方案:在固体电解质的制造方法中,通过在其中煅烧形成气体的无机材料(例如Li 2 CO 3 ) 将规定的温度在溶剂中混合粉碎,将混合的无机材料在比规定温度高的临时煅烧温度下暂时煅烧,并且低于成型煅烧温度以在成型后煅烧它们,规定的添加量的无机材料为 加入到煅烧材料中并在溶剂中混合并粉碎,添加无机材料的材料在临时煅烧温度下进一步临时煅烧,并将材料暂时重新煅烧而不将其输入到溶剂中,并被模塑成型体 在模塑煅烧温度下煅烧。 因此,在成型和煅烧中,体积变化等变小,组成漂移进一步被抑制。 因此,通过该方法获得的固体电解质显示出高的相对密度和导电性。 版权所有(C)2010,JPO&INPIT
    • 29. 发明专利
    • Composite electrolyte membrane and its manufacturing method
    • 复合电解质膜及其制造方法
    • JP2009193825A
    • 2009-08-27
    • JP2008033743
    • 2008-02-14
    • Toyota Central R&D Labs Inc株式会社豊田中央研究所
    • KAMIYA ATSUSHITSUSAKA KYOKOASAOKA MASAHIKO
    • H01B1/06C08J5/22H01B13/00H01M8/02H01M8/10
    • Y02P70/56
    • PROBLEM TO BE SOLVED: To provide a composite electrolyte membrane which has a high electrolyte filling factor and moreover has little possibility to generate pores even if swelling and drying are repeated, and to provide its manufacturing method.
      SOLUTION: The method of manufacturing a composite electrolyte membrane includes: a filling step in which a solid polymer electrolyte is filled in a porous membrane; and a hot pressing step in which the porous membrane in which the solid polymer electrolyte is filled is hot pressed at a hot press temperature equal to or higher than a melting point of the porous membrane and moreover at a hot press temperature equal to or lower than decomposition starting temperatures of the solid polymer electrolyte and the porous membrane. The composite electrolyte membrane is manufactured in the manufacturing method.
      COPYRIGHT: (C)2009,JPO&INPIT
    • 要解决的问题:提供一种具有高电解质填充因子的复合电解质膜,并且即使重复溶胀和干燥也不会产生孔,并且提供其制造方法。 解决方案:制造复合电解质膜的方法包括:填充步骤,其中固体聚合物电解质填充在多孔膜中; 和热压步骤,其中填充固体聚合物电解质的多孔膜在等于或高于多孔膜的熔点的热压温度下进行热压,此外在热压温度等于或低于 固体聚合物电解质和多孔膜的分解起始温度。 复合电解质膜由制造方法制造。 版权所有(C)2009,JPO&INPIT