会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 25. 发明授权
    • Image-wide artifacts reduction caused by high attenuating objects in ct deploying voxel tissue class
    • 在ct部署体素组织类中由高衰减对象引起的图像范围的伪影减少
    • US07636461B2
    • 2009-12-22
    • US10597566
    • 2005-01-24
    • Lothar SpiesCeline Saint OliveMichael KausVladimir PekarHimanshu P. Shukla
    • Lothar SpiesCeline Saint OliveMichael KausVladimir PekarHimanshu P. Shukla
    • G06K9/00
    • G06T11/008G06T2211/424
    • A reconstruction processor (34) reconstructs acquired projection data (S) into an uncorrected reconstructed image (T). A classifying algorithm (66) classifies pixels of the uncorrected reconstructed image (T) at least into metal, bone, tissue, and air pixel classes. A clustering algorithm (60) iteratively assigns pixels to best fit classes. A pixel replacement algorithm (70) replaces metal class pixels of the uncorrected reconstructed image (T) with pixel values of the bone density class to generate a metal free image. A morphological algorithm (80) applies prior knowledge of the subject's anatomy to the metal free image to correct the shapes of the class regions to generate a model tomogram image. A forward projector (88) forward projects the model tomogram image to generate model projection data (Smodel). A corrupted rays identifying algorithm (100) identifies the rays in the original projection data (S) which lie through the regions containing metal objects. A corrupted rays replacement algorithm (102) replaces the corrupted regions with corresponding regions of the model projection data to generate corrected projection data (S′). The reconstruction processor (34) reconstructs the corrected projection data (S) into a corrected reconstructed 3D image (T′).
    • 重建处理器(34)将所获取的投影数据(S)重建成未校正的重建图像(T)。 分类算法(66)至少将未校正的重建图像(T)的像素分类为金属,骨骼,组织和空气像素类。 聚类算法(60)迭代地将像素分配给最佳拟合类。 像素替换算法(70)用未被校正的重建图像(T)的金属类像素替换骨密度类别的像素值,以产生无金属图像。 形态学算法(80)将受试者解剖学的先验知识应用于无金属图像,以校正类别区域的形状以产生模型断层图像。 向前投影仪(88)向前投影模型断层图像以产生模型投影数据(Smodel)。 损坏的光线识别算法(100)识别穿过包含金属物体的区域的原始投影数据(S)中的光线。 损坏的光线替换算法(102)将损坏的区域替换为模型投影数据的相应区域,以产生校正投影数据(S')。 重构处理器(34)将经校正的投影数据(S)重建为经校正的重建3D图像(T')。
    • 26. 发明申请
    • Image-Wide Artifacts Reduction Caused by High Attenuating Objects in Ct Deploying Voxel Tissue Class
    • 在Ct部署体素组织类中由高度衰减对象引起的图像宽的人工减少
    • US20080253635A1
    • 2008-10-16
    • US10597566
    • 2005-01-24
    • Lothar SpiesCeline Saint OliveMichael KausVladimir PekarHimanshu P. Shukla
    • Lothar SpiesCeline Saint OliveMichael KausVladimir PekarHimanshu P. Shukla
    • G06T11/00
    • G06T11/008G06T2211/424
    • A reconstruction processor (34) reconstructs acquired projection data (S) into an uncorrected reconstructed image (T). A classifying algorithm (66) classifies pixels of the uncorrected reconstructed image (T) at least into metal, bone, tissue, and air pixel classes. A clustering algorithm (60) iteratively assigns pixels to best fit classes. A pixel replacement algorithm (70) replaces metal class pixels of the uncorrected reconstructed image (T) with pixel values of the bone density class to generate a metal free image. A morphological algorithm (80) applies prior knowledge of the subject's anatomy to the metal free image to correct the shapes of the class regions to generate a model tomogram image. A forward projector (88) forward projects the model tomogram image to generate model projection data (Smodel). A corrupted rays identifying algorithm (100) identifies the rays in the original projection data (S) which lie through the regions containing metal objects. A corrupted rays replacement algorithm (102) replaces the corrupted regions with corresponding regions of the model projection data to generate corrected projection data (S). The reconstruction processor (34) reconstructs the corrected projection data (S) into a corrected reconstructed 3D image (T′).
    • 重建处理器(34)将所获取的投影数据(S)重建成未校正的重建图像(T)。 分类算法(66)至少将未校正的重建图像(T)的像素分类为金属,骨骼,组织和空气像素类。 聚类算法(60)迭代地将像素分配给最佳拟合类。 像素替换算法(70)用未被校正的重建图像(T)的金属类像素替换骨密度类别的像素值,以产生无金属图像。 形态学算法(80)将受试者解剖学的先验知识应用于无金属图像,以校正类别区域的形状以产生模型断层图像。 前向投影仪(88)向前投影模型断层图像以产生模型投影数据(S 模型)。 损坏的光线识别算法(100)识别穿过包含金属物体的区域的原始投影数据(S)中的光线。 损坏的光线替换算法(102)将损坏的区域替换为模型投影数据的相应区域,以产生校正的投影数据(S)。 重构处理器(34)将经校正的投影数据(S)重建为经校正的重建3D图像(T')。
    • 29. 发明申请
    • METHOD, AN APPARATUS AND A COMPUTER PROGRAM FOR DATA PROCESSING
    • 方法,数据处理的装置和计算机程序
    • US20100061632A1
    • 2010-03-11
    • US12516357
    • 2007-11-26
    • Stewart YoungDaniel BystrovThomas NetschMichael KausVladimir Pekar
    • Stewart YoungDaniel BystrovThomas NetschMichael KausVladimir Pekar
    • G06K9/34G06K9/46
    • G06T7/149G06T7/12G06T7/70G06T2207/30016
    • The invention relates to a method for data processing. At stage 3 the position of the reference object in the reference image and its relation to a set of reference landmarks in the reference image is established at step 6. In order to enable this, the reference imaging of learning examples may be performed at step 2 and each reference image may be analyzed at step 4, the results may be stored in a suitably arranged database. In order to process the image under consideration, the image is accessed at step 11, the suitable landmark corresponding to the reference landmark in the reference image is identified at step 13 and the spatial relationship established at step 6 is applied to the landmark thereby providing the initial position of the object in the actual image. In case when for the object an imaging volume is selected, the method 1 according to the invention follows to step 7, whereby the scanning 17 is performed within the boundaries given by the thus established scanning volume. In case when for the object a model representative of the target is selected, the method 1 follows to the image segmentation step 19, whereby a suitable segmentation is performed. In case when for the model a deformable model is selected, the segmentation is performed by deforming the model thereby providing spatial boundaries of the target area. The invention further relates to an apparatus and a computer program for image processing.
    • 本发明涉及一种数据处理方法。 在阶段3,在步骤6中建立参考图像中的参考对象的位置及其与参考图像中的一组参考标记的关系。为了实现这一点,可以在步骤2执行学习示例的参考成像 并且可以在步骤4分析每个参考图像,结果可以存储在适当布置的数据库中。 为了处理所考虑的图像,在步骤11访问图像,在步骤13识别与参考图像中的参考标记相对应的合适地标,并将在步骤6建立的空间关系应用于地标,从而提供 物体在实际图像中的初始位置。 在对于物体选择成像体积的情况下,根据本发明的方法1遵循步骤7,由此在由这样建立的扫描体积给出的边界内执行扫描17。 在针对对象的情况下,选择了表示目标的模型,则对图像分割步骤19进行方法1,由此执行适当的分割。 在为模型选择可变形模型的情况下,通过使模型变形从而提供目标区域的空间边界来执行分割。 本发明还涉及一种用于图像处理的装置和计算机程序。