会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 21. 发明申请
    • III-V light emitting device
    • III-V发光装置
    • US20070069225A1
    • 2007-03-29
    • US11237215
    • 2005-09-27
    • Michael KramesNathan GardnerJohn Epler
    • Michael KramesNathan GardnerJohn Epler
    • H01L33/00H01L29/22
    • H01L21/2654H01L21/76254H01L33/0075H01L33/0079H01S5/32341H01S2304/12
    • A semiconductor structure includes an n-type region, a p-type region, and a III-nitride light emitting layer disposed between the n-type region and the p-type region. The III-nitride light emitting layer has a lattice constant greater than 3.19 Å. Such a semiconductor structure may be grown on a substrate including a host and a seed layer bonded to the host. In some embodiments, a bonding layer bonds the host to the seed layer. The seed layer may be thinner than a critical thickness for relaxation of strain in the semiconductor structure, such that strain in the semiconductor structure is relieved by dislocations formed in the seed layer, or by gliding between the seed layer and the bonding layer an interface between the two layers. In some embodiments, the host may be separated from the semiconductor structure and seed layer by etching away the bonding layer.
    • 半导体结构包括设置在n型区域和p型区域之间的n型区域,p型区域和III族氮化物发光层。 III族氮化物发光层的晶格常数大于3.19埃。 这样的半导体结构可以在包含与主体结合的主体和种子层的基板上生长。 在一些实施方案中,结合层将主体结合到种子层。 种子层可以比用于缓和半导体结构中的应变的临界厚度薄,使得半导体结构中的应变由种子层中形成的位错或通过在种子层和结合层之间滑动而消除, 两层。 在一些实施例中,可以通过蚀刻掉粘合层来将主体与半导体结构和种子层分离。
    • 25. 发明授权
    • Silicone based reflective underfill and thermal coupler
    • 硅基反射底部填充和热耦合器
    • US08471280B2
    • 2013-06-25
    • US12613924
    • 2009-11-06
    • Rafael I. AldazGrigoriy BasinPaul S. MartinMichael Krames
    • Rafael I. AldazGrigoriy BasinPaul S. MartinMichael Krames
    • H01L23/29
    • H01L33/62H01L33/0079H01L33/382H01L33/60H01L33/641H01L33/642H01L33/647H01L2924/0002H01L2933/0091H01L2924/00
    • In one embodiment, a flip chip LED is formed with a high density of gold posts extending from a bottom surface of its n-layer and p-layer. The gold posts are bonded to submount electrodes. An underfill material is then molded to fill the voids between the bottom of the LED and the submount. The underfill comprises a silicone molding compound base and about 70-80%, by weight, alumina (or other suitable material). Alumina has a thermal conductance that is about 25 times better than that of the typical silicone underfill, which is mostly silica. The alumina is a white powder. The underfill may also contain about 5-10%, by weight, TiO2 to increase the reflectivity. LED light is reflected upward by the reflective underfill, and the underfill efficiently conducts heat to the submount. The underfill also randomizes the light scattering, improving light extraction. The distributed gold posts and underfill support the LED layers during a growth substrate lift-off process.
    • 在一个实施例中,倒装芯片LED形成有从其n层和p层的底表面延伸的高密度的金柱。 金柱结合到底座电极。 然后将底部填充材料模制以填充LED底部和底座之间的空隙。 底部填充物包含硅氧烷模塑料基料和约70-80重量%的氧化铝(或其它合适的材料)。 氧化铝的导热系数比典型的硅胶底部填充物的热导率高出约25倍,这主要是二氧化硅。 氧化铝是白色粉末。 底部填充剂还可以含有约5-10重量%的TiO 2以增加反射率。 LED灯由反射底层填充物向上反射,底部填充物有效地将热量传导到底座。 底部填充物也随机化光散射,改善光提取。 分布式金柱和底层填料在生长衬底剥离过程中支持LED层。
    • 26. 发明申请
    • LED Including Photonic Crystal Structure
    • 包括光子晶体结构的LED
    • US20080070334A1
    • 2008-03-20
    • US11868854
    • 2007-10-08
    • Michael KramesMihail SigalasJonathan Wierer
    • Michael KramesMihail SigalasJonathan Wierer
    • H01L21/00
    • H01L33/20H01L33/08H01L2224/48091H01L2933/0083Y10S438/943H01L2924/00014
    • A photonic crystal light emitting diode (“PXLED”) is provided. The PXLED includes a periodic structure, such as a lattice of holes, formed in the semiconductor layers of an LED. The parameters of the periodic structure are such that the energy of the photons, emitted by the PXLED, lies close to a band edge of the band structure of the periodic structure. Metal electrode layers have a strong influence on the efficiency of the PXLEDs. Also, PXLEDs formed from GaN have a low surface recombination velocity and hence a high efficiency. The PXLEDs are formed with novel fabrication techniques, such as the epitaxial lateral overgrowth technique over a patterned masking layer, yielding semiconductor layers with low defect density. Inverting the PXLED to expose the pattern of the masking layer or using the Talbot effect to create an aligned second patterned masking layer allows the formation of PXLEDs with low defect density.
    • 提供了一种光子晶体发光二极管(“PXLED”)。 PXLED包括在LED的半导体层中形成的诸如孔格的周期性结构。 周期性结构的参数使得由PXLED发射的光子的能量靠近周期性结构的带结构的带边。 金属电极层对PXLED的效率有很大的影响。 此外,由GaN形成的PXLED具有低表面复合速度,因此具有高效率。 PXLED由新颖的制造技术形成,例如在图案化掩模层上的外延横向过度生长技术,产生具有低缺陷密度的半导体层。 将PXLED反转以露出掩模层的图案或使用Talbot效应创建对准的第二图案化掩模层允许形成具有低缺陷密度的PXLED。
    • 27. 发明申请
    • A1lnGaP LED having reduced temperature dependence
    • AlInGaP LED具有降低的温度依赖性
    • US20060220031A1
    • 2006-10-05
    • US11100080
    • 2005-04-05
    • Michael KramesNathan GardnerFrank Steranka
    • Michael KramesNathan GardnerFrank Steranka
    • H01L33/00
    • H01L33/30H01L2224/13H01L2924/00011H01L2924/00014H01L2224/0401
    • To increase the lattice constant of AlInGaP LED layers to greater than the lattice constant of GaAs for reduced temperature sensitivity, an engineered growth layer is formed over a substrate, where the growth layer has a lattice constant equal to or approximately equal to that of the desired AlInGaP layers. In one embodiment, a graded InGaAs or InGaP layer is grown over a GaAs substrate. The amount of indium is increased during growth of the layer such that the final lattice constant is equal to that of the desired AlInGaP active layer. In another embodiment, a very thin InGaP, InGaAs, or AlInGaP layer is grown on a GaAs substrate, where the InGaP, InGaAs, or AlInGaP layer is strained (compressed). The InGaP, InGaAs, or AlInGaP thin layer is then delaminated from the GaAs and relaxed, causing the lattice constant of the thin layer to increase to the lattice constant of the desired overlying AlInGaP LED layers. The LED layers are then grown over the thin InGaP, InGaAs, or AlInGaP layer.
    • 为了将AlInGaP LED层的晶格常数提高到大于GaAs的晶格常数以降低温度敏感性,在衬底上形成工程化生长层,其中生长层具有等于或近似等于所需的晶格常数的晶格常数 AlInGaP层。 在一个实施例中,在GaAs衬底上生长渐变的InGaAs或InGaP层。 在层的生长期间铟的量增加,使得最终晶格常数等于所需的AlInGaP活性层的量。 在另一实施例中,在GaAs衬底上生长非常薄的InGaP,InGaAs或AlInGaP层,其中InGaP,InGaAs或AlInGaP层被应变(压缩)。 然后,InGaP,InGaAs或AlInGaP薄层从GaAs分层并且弛豫,导致薄层的晶格常数增加到期望的上覆AlInGaP LED层的晶格常数。 然后在薄的InGaP,InGaAs或AlInGaP层上生长LED层。