会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 21. 发明申请
    • ACTIVITY DETECTOR
    • 活动检测器
    • US20070292028A1
    • 2007-12-20
    • US11845588
    • 2007-08-27
    • Patrice Simard
    • Patrice Simard
    • G06K9/34
    • G06K9/00456
    • A system and method facilitating activity (e.g., dithering/half toning and/or noise) detection is provided. The invention includes an activity detection system having a connected component analyzer and an activity detector. The invention provides for the quantity of connected component(s) in and/or intersecting a region surrounding a pixel to be determined. The activity detector provides an activity map output based, at least in part, upon the quantity of connected component(s) in and/or intersecting the region. The invention further provides for an optional image processor. In one example, if the quantity exceeds a first threshold, dithering/half toning is detected and appropriate action can be taken. Additionally, if the quantity is less than a second threshold, noise is detected and appropriate action can be taken.
    • 提供了促进活动(例如,抖动/半色调和/或噪声)检测的系统和方法。 本发明包括具有连接分量分析器和活动检测器的活动检测系统。 本发明提供在要确定的像素周围的区域中和/或相交的连接分量的量。 活动检测器至少部分地基于在区域中和/或与该区域相交的连接分量的量来提供活动图输出。 本发明还提供了一种可选的图像处理器。 在一个示例中,如果数量超过第一阈值,则检测到抖动/半色调,并且可以采取适当的动作。 此外,如果数量小于第二阈值,则检测噪声并且可以采取适当的动作。
    • 22. 发明申请
    • PROCESSING MACHINE LEARNING TECHNIQUES USING A GRAPHICS PROCESSING UNIT
    • 使用图形处理单元处理机器学习技术
    • US20070211064A1
    • 2007-09-13
    • US11748474
    • 2007-05-14
    • Ian BuckPatrice SimardDavid Steinkraus
    • Ian BuckPatrice SimardDavid Steinkraus
    • G06F13/14
    • G06N99/005G06N3/08
    • A system and method for processing machine learning techniques (such as neural networks) and other non-graphics applications using a graphics processing unit (GPU) to accelerate and optimize the processing. The system and method transfers an architecture that can be used for a wide variety of machine learning techniques from the CPU to the GPU. The transfer of processing to the GPU is accomplished using several novel techniques that overcome the limitations and work well within the framework of the GPU architecture. With these limitations overcome, machine learning techniques are particularly well suited for processing on the GPU because the GPU is typically much more powerful than the typical CPU. Moreover, similar to graphics processing, processing of machine learning techniques involves problems with solving non-trivial solutions and large amounts of data.
    • 一种用于处理机器学习技术(例如神经网络)和使用图形处理单元(GPU)来加速和优化处理的其他非图形应用的系统和方法。 该系统和方法传输一种可用于从CPU到GPU的各种机器学习技术的架构。 处理到GPU的转移是通过克服这些限制并在GPU架构的框架内工作良好的几种新技术实现的。 由于克服了这些限制,机器学习技术特别适用于GPU上的处理,因为GPU通常比典型的CPU功能更强大。 此外,类似于图形处理,机器学习技术的处理涉及解决非平凡解决方案和大量数据的问题。
    • 28. 发明授权
    • System and method to facilitate pattern recognition by deformable matching
    • 通过可变形匹配促进模式识别的系统和方法
    • US06993189B2
    • 2006-01-31
    • US10867255
    • 2004-06-14
    • Nebojsa JojicPatrice Simard
    • Nebojsa JojicPatrice Simard
    • G06K9/48
    • G06K9/6206Y10S707/99936
    • A system and method to facilitate pattern recognition or matching between patterns are disclosed that is substantially invariant to small transformations. A substantially smooth deformation field is applied to a derivative of a first pattern and a resulting deformation component is added to the first pattern to derive a first deformed pattern. An indication of similarity between the first pattern and a second pattern may be determined by minimizing the distance between the first deformed pattern and the second pattern with respect to deformation coefficients associated with each deformed pattern. The foregoing minimization provides a system (e.g., linear) that may be solved with standard methods.
    • 公开了一种促进模式识别或模式匹配的系统和方法,其基本上不变形为小变换。 将基本平滑的变形场施加到第一图案的导数,并将所得到的变形分量添加到第一图案以导出第一变形图案。 第一图案和第二图案之间的相似度的指示可以通过相对于与每个变形图案相关联的变形系数最小化第一变形图案和第二图案之间的距离来确定。 上述最小化提供了可以用标准方法解决的系统(例如,线性)。