会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 23. 发明申请
    • MICROCHANNEL LASER HAVING MICROPLASMA GAIN MEDIA
    • 具有微波增益介质的MICROCHANNEL激光
    • US20100296978A1
    • 2010-11-25
    • US12682977
    • 2008-10-27
    • Sung-Jin ParkJ. Gary EdenPaoyei ChenPaul A. TchertchianThomas M. Spinka
    • Sung-Jin ParkJ. Gary EdenPaoyei ChenPaul A. TchertchianThomas M. Spinka
    • H01S5/20H01S5/187B01J19/08
    • H01S3/05H01S3/03H01S3/063H01S3/09H01S3/0971
    • The invention provides microchannel lasers having a microplasma gain medium. Lasers of the invention can be formed in semiconductor materials, and can also be formed in polymer materials. In a microlaser of the invention, high density plasmas are produced in microchannels. The microplasma acts as a gain medium with the electrodes sustaining the plasma in the microchannel. Reflectors are used with the microchannel for obtaining optical feedback to obtain lasing in the microplasma gain medium in devices of the invention for a wide range of atomic and molecular species. Several atomic and molecular gain media will produce sufficiently high gain coefficients that reflectors (mirrors) are not necessary. Microlasers of the invention are based on microplasma generation in channels of various geometries. Preferred embodiment microlaser designs can be fabricated in semiconductor materials, such as Si wafers, by standard photolithographic techniques, or in polymers by replica molding.
    • 本发明提供了具有微质增益介质的微通道激光器。 本发明的激光器可以形成在半导体材料中,也可以形成在聚合物材料中。 在本发明的微型激光器中,在微通道中产生高密度等离子体。 微量体作为增益介质,其中电极在微通道中维持等离子体。 反射器与微通道一起使用以获得光学反馈,以在广泛的原子和分子物种的本发明装置中的微量级增益介质中获得激光。 几个原子和分子增益介质将产生足够高的增益系数,反射器(反射镜)不是必需的。 本发明的微型扫描器基于各种几何形状的通道中的微量生成。 优选实施例微激光器设计可以通过标准光刻技术在半导体材料(例如Si晶片)中或通过复制成型制成聚合物。
    • 28. 发明授权
    • Method for making buried circumferential electrode microcavity plasma device arrays, and electrical interconnects
    • 用于制造埋置的圆周电极微腔等离子体器件阵列和电互连的方法
    • US08404558B2
    • 2013-03-26
    • US13188712
    • 2011-07-22
    • J. Gary EdenSung-Jin ParkKwang-Soo Kim
    • J. Gary EdenSung-Jin ParkKwang-Soo Kim
    • H01L33/16H01J17/04H01J17/49
    • H01J11/18G09F9/313
    • In a preferred method of formation embodiment, a metal foil or film is obtained or formed with micro-holes. The foil is anodized to form metal oxide. One or more self-patterned metal electrodes are automatically formed and buried in the metal oxide created by the anodization process. The electrodes form in a closed circumference around each microcavity in a plane(s) transverse to the microcavity axis, and can be electrically isolated or connected. Preferred embodiments provide inexpensive microplasma device electrode structures and a fabrication method for realizing microplasma arrays that are lightweight and scalable to large areas. Electrodes buried in metal oxide and complex patterns of electrodes can also be formed without reference to microplasma devices—that is, for general electrical circuitry.
    • 在优选的形成实施方案中,获得或形成有微孔的金属箔或膜。 箔被阳极化以形成金属氧化物。 自动形成一个或多个自图形金属电极并将其埋在通过阳极氧化处理产生的金属氧化物中。 电极在横截于微腔轴的平面中围绕每个微腔的封闭圆周形成,并且可以电隔离或连接。 优选实施例提供廉价的微型器件电极结构和用于实现轻量级并且可扩展到大面积的微等离子体阵列的制造方法。 掩埋在金属氧化物中的电极和电极的复杂图案也可以形成,而不参考微等离子体装置,即用于一般的电路。
    • 30. 发明申请
    • ELLIPSOIDAL MICROCAVITY PLASMA DEVICES AND POWDER BLASTING FORMATION
    • ELLIPSOIDAL微波等离子体装置和粉末喷砂形成
    • US20100072893A1
    • 2010-03-25
    • US12235796
    • 2008-09-23
    • J. Gary EdenSung-Jin ParkSeung Hoon Sung
    • J. Gary EdenSung-Jin ParkSeung Hoon Sung
    • H01J17/49H01J9/24
    • H01J65/046H01J9/241H01J11/18
    • The invention provides microcavity plasma devices and arrays that are formed in layers that also seal the plasma medium, i.e., gas(es) and/or vapors. No separate packaging layers are required and additional packaging can be omitted if it is desirable to do so. A preferred microcavity plasma device includes first and second thin layers that are joined together. A half ellipsoid microcavity or plurality of half ellipsoid microcavities is defined in one or both of the first and second thin layers, and electrodes are arranged with respect to the microcavity to excite a plasma within said microcavities upon application of a predetermined voltage to the electrodes. A method for forming a microcavity plasma device having a plurality of half or full ellipsoid microcavities in one or both of first and second thin layers is also provided by a preferred embodiment. The method includes defining a pattern of protective polymer on the first thin layer. Powder blasting forms half ellipsoid microcavities in the first thin layer. The second thin layer is joined to the first layer. The patterning can be conducted lithographically or can be conduced with a simple screen.
    • 本发明提供了形成为也密封等离子体介质即气体和/或蒸汽的层的微腔等离子体装置和阵列。 不需要单独的包装层,如果要这样做,可以省略额外的包装。 优选的微腔等离子体装置包括连接在一起的第一和第二薄层。 半椭圆形微腔或多个半椭圆形微腔被限定在第一和第二薄层中的一个或两个中,并且相对于微腔布置电极,以在对电极施加预定电压时在所述微腔内激发等离子体。 优选实施例也提供了一种在第一和第二薄层中的一个或两个中形成具有多个半或全椭圆形微腔的微腔等离子体装置的方法。 该方法包括在第一薄层上限定保护性聚合物的图案。 粉末喷射在第一薄层中形成半椭圆形微腔。 第二薄层连接到第一层。 图案化可以光刻地进行,或者可以用简单的屏幕进行。