会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 11. 发明授权
    • Defect management engine for generating a unified address to access memory cells in a primary and a redundancy memory array
    • 缺陷管理引擎,用于生成统一的地址,以访问主和冗余存储器阵列中的存储单元
    • US06243306B1
    • 2001-06-05
    • US09619257
    • 2000-07-19
    • Toshiaki Kirihata
    • Toshiaki Kirihata
    • G11C700
    • G11C29/76G11C29/808
    • A method and apparatus for eliminating defects present in memory devices by way of a defect management engine (DME) is described. The DME integrates a plurality of defective address cells and redundancy address cells within an array. The defective address cells store addresses for accessing defective cells in a main memory. The redundancy address cells store addresses for accessing redundancy cells within a redundancy memory. The address data in the defective address cells is compared to the address input of the DME, thereby providing a redundancy match detection scheme. When no match occurs, the DME outputs the address input of the DME, which allows the main memory to be accessed when operating in a normal mode. When a match occurs, the DME outputs the address read from the redundancy address cells, which allows the redundancy memory to be accessed when operating in a redundancy mode.
    • 描述了通过缺陷管理引擎(DME)消除存储在设备中的缺陷的方法和装置。 DME在阵列内集成了多个缺陷地址单元和冗余地址单元。 缺陷地址单元存储用于访问主存储器中的有缺陷单元的地址。 冗余地址单元存储用于访问冗余存储器内的冗余单元的地址。 将缺陷地址单元中的地址数据与DME的地址输入进行比较,从而提供冗余匹配检测方案。 当不匹配时,DME输出DME的地址输入,允许在正常模式下工作时访问主存储器。 当匹配发生时,DME输出从冗余地址单元读取的地址,这允许在冗余模式下操作时访问冗余存储器。
    • 12. 发明授权
    • Hierarchical prefetch for semiconductor memories
    • 半导体存储器的分层预取
    • US6081479A
    • 2000-06-27
    • US333539
    • 1999-06-15
    • Brian JiToshiaki KirihataGerhard MuellerDavid Hanson
    • Brian JiToshiaki KirihataGerhard MuellerDavid Hanson
    • G11C7/10G11C8/00
    • G11C7/1039
    • A semiconductor memory in accordance with the present invention includes a data path including a plurality of hierarchical stages, each stage including a bit data rate which is different from the other stages. At least two prefetch circuits are disposed between the stages. The at least two prefetch circuits include at least two latches for receiving data bits and storing the data bits until a next stage in the hierarchy is capable of receiving the data bits. The at least two prefetch circuits are coupled between stages such that an overall data rate per stage between stages are substantially equal. Control signals control the at least two latches such that prefetch circuits maintain the overall data rate between the stages.
    • 根据本发明的半导体存储器包括包括多个分层级的数据路径,每个级包括与其他级不同的位数据速率。 至少两个预取电路设置在各级之间。 至少两个预取电路包括用于接收数据位并存储数据位的至少两个锁存器,直到层级中的下一级能够接收数据位。 所述至少两个预取电路耦合在级之间,使得级之间每级的总体数据速率基本相等。 控制信号控制至少两个锁存器,使得预取电路保持级之间的总体数据速率。
    • 13. 发明授权
    • Repairable semiconductor memory circuit having parrel redundancy
replacement wherein redundancy elements replace failed elements
    • 具有对等冗余替换的可修复半导体存储器电路,其中冗余元件代替故障元件
    • US6052318A
    • 2000-04-18
    • US218561
    • 1998-12-22
    • Toshiaki KirihataGabriel Daniel
    • Toshiaki KirihataGabriel Daniel
    • G11C11/401G11C29/00G11C29/04H01L21/82H01L21/8242H01L27/108G11C7/00
    • G11C29/816G11C11/401
    • The present disclosure relates to semiconductor memories and more particularly, to an improved method and apparatus for replacing defective row/column lines. In accordance with the present invention, a high replacement flexibility redundancy and method is employed to increase chip yield and prevent sense amplifier signal contention. Redundancy elements are integrated in at least two of a plurality of memory arrays, which don't share the sense amplifiers. Thus, no additional sense amplifiers are required. A defective row/column line in a first array or block is replaced with a redundant row/column line from its own redundancy. A corresponding row/column line whether defective or not is replaced in a second array or block, which does not share sense amplifiers with the first block. The corresponding row/column is replaced to mimic the redundancy replacement of the first block thereby increasing flexibility and yield as well as preventing sensing signal contention.
    • 本公开涉及半导体存储器,更具体地,涉及用于替换有缺陷的行/列线的改进的方法和装置。 根据本发明,采用高替换灵活性冗余和方法来提高芯片产量并防止感测放大器信号争用。 冗余元件集成在不共享读出放大器的多个存储器阵列中的至少两个中。 因此,不需要额外的感测放大器。 第一个阵列或块中的有缺陷的行/列线被自己的冗余中的冗余行/列线代替。 无论是否有故障,相应的行/列线被替换为不与第一块共享读出放大器的第二阵列或块。 相应的行/列被替换以模拟第一块的冗余替换,从而增加灵活性和产量以及防止感测信号争用。
    • 14. 发明授权
    • Method of structuring a multi-bank DRAM into a hierarchical column
select line architecture
    • 将多存储体DRAM构造为分层列选择行架构的方法
    • US5949732A
    • 1999-09-07
    • US927160
    • 1997-09-11
    • Toshiaki Kirihata
    • Toshiaki Kirihata
    • G11C7/18G11C11/4091G11C8/00
    • G11C11/4091G11C7/18
    • A method of structuring a multi-bank DRAM into a hierarchical column select line architecture is described. The DRAM is provided with a plurality of memory cells which are organized in at least two banks. Each of the banks includes memory cells which are arranged in rows and columns. The memory cells store data provided by at least one bit line and at least one data line. The DRAM includes: a first switch for selecting one of the two banks; and a second switch connected to the first switch for selecting one of the columns, wherein the first and second switches couple one of the bit lines to one of the data lines, enabling data to be written into or read out of memory cells common to the selected bank and to the selected column. The first switch is controlled by a plurality of bank CSLs (BCSLs), wherein the BCSLs are shared by some of the blocks within the same bank, but not by any of the blocks in other banks. The second switch is controlled by a plurality of global CSLs (GCSLs), the GCSLs being shared by all remaining banks within a unit. The BCSLs and GCSLs are controlled by the bank column decoder and global column decoder.
    • 描述了将多存储体DRAM构造成分层列选择线架构的方法。 DRAM具有被组织在至少两个组中的多个存储单元。 每个存储体包括排列成行和列的存储单元。 存储器单元存储由至少一个位线和至少一个数据线提供的数据。 DRAM包括:用于选择两个银行之一的第一开关; 以及第二开关,其连接到所述第一开关,用于选择所述列之一,其中所述第一和第二开关将所述位线中的一个耦合到所述数据线中的一个,使得能够将数据写入或读出与 选定的银行和选定的列。 第一开关由多个银行CSL(BCSL)控制,其中BCSL由同一银行内的一些块共享,但不由其他银行中的任何块共享。 第二开关由多个全局CSL(GCSL)控制,GCSL由单元内的所有剩余的单元共享。 BCSL和GCSL由银行列解码器和全局列解码器控制。
    • 17. 发明授权
    • Hierarchical column select line architecture for multi-bank DRAMs
    • 多行DRAM的分层列选择线架构
    • US5822268A
    • 1998-10-13
    • US927158
    • 1997-09-11
    • Toshiaki Kirihata
    • Toshiaki Kirihata
    • G11C7/10G11C8/12G11C11/408G11C11/4096G11C8/00
    • G11C7/10G11C11/408G11C11/4096G11C7/1006G11C8/12
    • A multi-bank DRAM having a hierarchical column select line architecture is described. The DRAM is provided with a plurality of memory cells which are organized in at least two banks. Each of the banks includes memory cells which are arranged in rows and columns. The memory cells store data provided by at least one bit line and at least one data line. The DRAM includes: a first switch for selecting one of the two banks; and a second switch connected to the first switch for selecting one of the columns, wherein the first and second switches couple one of the bit lines to one of the data lines, enabling data to be written into or read out of memory cells common to the selected bank and to the selected column. The first switch is controlled by a plurality of bank CSLs (BCSLs), wherein the BCSLs are shared by some of the blocks within the same bank, but not by any of the blocks in other banks. The second switch is controlled by a plurality of global CSLs (GCSLs), the GCSLs being shared by all remaining banks within a unit. The BCSLs and GCSLs are controlled by the bank column decoder and by the global column decoder.
    • 描述具有分层列选择线架构的多存储体DRAM。 DRAM具有被组织在至少两个组中的多个存储单元。 每个存储体包括排列成行和列的存储单元。 存储器单元存储由至少一个位线和至少一个数据线提供的数据。 DRAM包括:用于选择两个银行之一的第一开关; 以及第二开关,其连接到所述第一开关,用于选择所述列之一,其中所述第一和第二开关将所述位线中的一个耦合到所述数据线中的一个,使得能够将数据写入或读出与 选定的银行和选定的列。 第一开关由多个银行CSL(BCSL)控制,其中BCSL由同一银行内的一些块共享,但不由其他银行中的任何块共享。 第二开关由多个全局CSL(GCSL)控制,GCSL由单元内的所有剩余的单元共享。 BCSL和GCSL由银行列解码器和全局列解码器控制。
    • 18. 发明授权
    • Row redundancy block architecture
    • 行冗余块架构
    • US5691946A
    • 1997-11-25
    • US758783
    • 1996-12-03
    • John DeBrosseToshiaki KirihataHing Wong
    • John DeBrosseToshiaki KirihataHing Wong
    • G11C11/401G11C29/00G11C29/04H01L21/8242H01L27/108G11C5/06
    • G11C29/80G11C29/808G11C29/84
    • Row redundancy control circuits which effectively reduce design space are arranged parallel to word direction and are arranged at the bottom of the redundancy block. This architecture change makes it possible to effectively lay out the redundancy control block by introducing (1) split-global-bus shared with local row redundancy wires, (2) half-length-one-way row redundancy-wordline-enable-signal wires which allows space saving, and (3) distributed wordline enable decoders designed to take advantage of the saved space. An illegal normal/redundancy access problem caused by the address versus timing skew has also been solved. The timing necessary for this detection is given locally by using its adjacent redundancy match detection. This allows the circuit to operate completely as an address driven circuit, resulting in fast and reliable redundancy match detection. In addition, a sample wordline enable signal (SWLE) is generated by using row redundancy match detection. One two-input OR gate allows the time at which SWLE sets sample wordline (SWL) to be the same as the time at which wordline enable (WLE) signal sets wordline (WL). The time at which SWLE sets SWL remains consistent regardless of mode, eliminating the existing reliability concern. This two-input OR gate combined with row redundancy match detection works as an ideal sample wordline enable generator.
    • 有效减少设计空间的行冗余控制电路与字方向平行排列,并配置在冗余块的底部。 通过引入(1)与本地行冗余线共享的分裂全局总线,(2)半长度单向行冗余字线使能信号线,可以有效地布置冗余控制块 这允许节省空间,以及(3)分布式字线使能解码器被设计为利用节省的空间。 由地址与时序偏差引起的非法正常/冗余访问问题也已解决。 通过使用其相邻的冗余匹配检测在本地给出该检测所需的定时。 这允许电路作为地址驱动电路完全操作,导致快速可靠的冗余匹配检测。 此外,通过使用行冗余匹配检测来生成采样字线使能信号(SWLE)。 一个双输入或门允许SWLE设置采样字线(SWL)的时间与字线使能(WLE)信号设置字线(WL)的时间相同。 无论模式如何,SWLE设置SWL的时间保持一致,从而消除了现有的可靠性问题。 该双输入OR门与行冗余匹配检测相结合,可作为理想的采样字线使能发生器。
    • 19. 发明授权
    • Random access memory having a flexible array redundancy scheme
    • 具有灵活阵列冗余方案的随机存取存储器
    • US5544113A
    • 1996-08-06
    • US346965
    • 1994-11-30
    • Toshiaki KirihataYohji Watanabe
    • Toshiaki KirihataYohji Watanabe
    • G11C29/00G11C7/00
    • G11C29/808
    • A wide Input/Output (I/O) Random Access Memory (RAM) with more efficient redundancy. The RAM array may be divided into individual units. Each unit is further divided into subarray blocks (blocks of subarrays). Each subarray or segment is organized by one and includes one spare column and may include spare word lines. When a block is accessed, only half of the segments are accessed. Whenever a segment is accessed, the segment's spare column is not. The spare columns from the unaccessed half block are available for repairing defective columns in the accessed half block. Data from columns in the accessed half and spare columns in the unaccessed half are transferred to Local Data Lines (LDLs) and from LDLs to Master Data Lines (MDLs). Valid data from accessed column lines and from selected spare lines are provided on the MDLS to second sense amplifiers. Defective columns are electrically replaced with spares after the second stage amplifiers. Thus, all of the spare columns in each half of each subarray block are available to replace an equal number of failed columns at any location in any segment in the other half block.
    • 具有更高效冗余的宽输入/输出(I / O)随机存取存储器(RAM)。 RAM阵列可以被分成单独的单元。 每个单元进一步分为子阵列(子阵列)。 每个子阵列或段由一个组成,并且包括一个备用列,并且可以包括备用字线。 访问块时,仅访问一半的段。 无论何时访问段,段的备用列都不存在。 来自未加工的半块的备用列可用于修复访问的半块中的有缺陷的列。 未访问的一半中的列中的数据和未加工的一半中的备用列的数据将传输到本地数据线(LDL),并从LDL传输到主数据线(MDL)。 在MDLS上向第二读出放大器提供来自所访问列线和选定备用线路的有效数据。 在第二级放大器之后,有缺陷的列被替换为备件。 因此,每个子阵列块的每一半中的所有备用列可用于在另一半块中的任何段中的任何位置处替换相等数量的故障列。