会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 11. 发明授权
    • Plasma induced flow control of boundary layer at airfoil endwall
    • 翼型端壁边界层等离子体诱导流量控制
    • US08435001B2
    • 2013-05-07
    • US12640242
    • 2009-12-17
    • Matthew D. MontgomeryChing-Pang LeeChander Prakash
    • Matthew D. MontgomeryChing-Pang LeeChander Prakash
    • F01D9/00
    • F01D5/145F05D2270/172Y02T50/67Y02T50/673
    • Plasma generators (48, 49, 70, 71) in an endwall (25) of an airfoil (22) induce aerodynamic flows in directions (50) that modify streamlines (47) of the endwall boundary layer toward a streamline geometry (46) of a midspan region of the airfoil. This reduces vortices (42) generated by the momentum deficit of the boundary layer, increasing aerodynamic efficiency. The plasma generators may be arrayed around the leading edge as well as between two airfoils (22) in a gas turbine nozzle structure, and may be positioned at correction points (68) in streamlines caused by surface contouring (66) of the endwall. The plasma generators may be oriented to generate flow vectors (74) that combine with boundary layer flow vectors (72) to produce resultant flow vectors (76) in directions that reduce turbulence.
    • 翼型件(22)的端壁(25)中的等离子体发生器(48,49,70,71)在方向(50)上引起空气动力学流动,所述方向(50)将端壁边界层的流线(47)改变为流线几何形状(46) 翼型的跨跨区域。 这减少了由边界层的动量缺失产生的旋涡(42),从而提高了空气动力学效率。 等离子体发生器可以围绕前缘以及在燃气涡轮喷嘴结构中的两个翼型件(22)之间排列,并且可以位于由端壁的表面轮廓(66)引起的流线中的校正点(68)处。 等离子体发生器可以被定向以产生与边界层流向量(72)组合的流向量(74),以在减少湍流的方向上产生合成流向量(76)。
    • 12. 发明申请
    • PLASMA ACTUATOR CONTROLLED FILM COOLING
    • 等离子体执行器控制膜冷却
    • US20110268556A1
    • 2011-11-03
    • US12770932
    • 2010-04-30
    • Matthew D. MontgomeryChander Prakash
    • Matthew D. MontgomeryChander Prakash
    • F04D29/58
    • F01D5/186F05D2260/202F05D2270/172
    • A film cooling apparatus with a cooling hole (46) in a component wall (40). A first surface (42) of the wall is subject to a hot gas flow (48). A second surface (44) receives a coolant gas (50). The coolant flows through the hole, then downstream over the first surface (42). One or more pairs of cooperating electrodes (60-61, 62-63, 80-81) generates and accelerates a plasma (70) that creates a body force acceleration (71, 82) in the coolant flow that urges the coolant flow to turn around the entry edge (57) and/or the exit edge (58) of the cooling hole without separating from the adjacent surface (47, 42). The electrodes may have a geometry that spreads the coolant into a fan shape over the hot surface (42) of the component wall (40).
    • 一种在组件壁(40)中具有冷却孔(46)的薄膜冷却装置。 壁的第一表面(42)经受热气流(48)。 第二表面(44)接收冷却剂气体(50)。 冷却剂流过孔,然后流过第一表面(42)的下游。 一对或多对配合电极(60-61,62-63,80-81)产生并加速等离子体(70),其产生在促使冷却剂流转向的冷却剂流中的体力加速度(71,82) 围绕冷却孔的入口边缘(57)和/或出口边缘(58),而不与相邻表面(47,42)分离。 电极可以具有将冷却剂扩散到组件壁(40)的热表面(42)上的扇形形状的几何形状。
    • 15. 发明申请
    • Plasma Induced Flow Control of Boundary Layer at Airfoil Endwall
    • 翼型端壁边界层等离子体诱导流量控制
    • US20110150653A1
    • 2011-06-23
    • US12640242
    • 2009-12-17
    • Matthew D. MontgomeryChing-Pang LeeChander Prakash
    • Matthew D. MontgomeryChing-Pang LeeChander Prakash
    • F01D5/14F01D9/02
    • F01D5/145F05D2270/172Y02T50/67Y02T50/673
    • Plasma generators (48, 49, 70, 71) in an endwall (25) of an airfoil (22) induce aerodynamic flows in directions (50) that modify streamlines (47) of the endwall boundary layer toward a streamline geometry (46) of a midspan region of the airfoil. This reduces vortices (42) generated by the momentum deficit of the boundary layer, increasing aerodynamic efficiency. The plasma generators may be arrayed around the leading edge as well as between two airfoils (22) in a gas turbine nozzle structure, and may be positioned at correction points (68) in streamlines caused by surface contouring (66) of the endwall. The plasma generators may be oriented to generate flow vectors (74) that combine with boundary layer flow vectors (72) to produce resultant flow vectors (76) in directions that reduce turbulence.
    • 翼型件(22)的端壁(25)中的等离子体发生器(48,49,70,71)在方向(50)上引起空气动力学流动,所述方向(50)将端壁边界层的流线(47)改变为流线几何形状(46) 翼型的跨跨区域。 这减少了由边界层的动量缺失产生的旋涡(42),从而提高了空气动力学效率。 等离子体发生器可以围绕前缘以及在燃气涡轮喷嘴结构中的两个翼型件(22)之间排列,并且可以位于由端壁的表面轮廓(66)引起的流线中的校正点(68)处。 等离子体发生器可以被定向以产生与边界层流向量(72)组合的流向量(74),以在减少湍流的方向上产生合成流向量(76)。