会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 12. 发明申请
    • Techniques for detecting and correcting errors using multiple interleave erasure pointers
    • 使用多个交错擦除指针检测和纠正错误的技术
    • US20050229069A1
    • 2005-10-13
    • US10817421
    • 2004-04-02
    • Martin HassnerVipul Srivastava
    • Martin HassnerVipul Srivastava
    • G06F11/00G06F11/30G08C25/00G11B20/18H03M13/00H04L1/00
    • H04L1/0057G11B20/18G11B2020/1843H04L1/0045H04L1/0064H04L1/0071
    • Techniques for detecting and correcting burst errors in data bytes formed in a two-level block code structure. A second level decoder uses block level check bytes to detect columns in a two-level block code structure that contain error bytes. The second level decoder generates erasure pointers that identify columns in the two-level block structure effected by burst errors. A first level decoder then uses codeword check bytes to correct all of the bytes in the columns identified by the erasure pointers. The first level decoder is freed to use all of the codeword check bytes only for error byte value calculations. The first level decoder does not need to use any of the codeword check bytes for error location calculations, because the erasure pointers generated by the second level decoder provide all of the necessary error locations. This techniques doubles the error correction capability of the first level decoder.
    • 用于检测和校正在两级块代码结构中形成的数据字节中的突发错误的技术。 第二级解码器使用块级检查字节来检测包含错误字节的两级块代码结构中的列。 第二级解码器产生擦除指针,其识别由突发错误影响的两级块结构中的列。 然后,第一级解码器使用码字校验字节来校正由擦除指针识别的列中的所有字节。 第一级解码器被释放以仅使用所有码字校验字节来进行错误字节值计算。 第一级解码器不需要使用任何码字校验字节进行错误位置计算,因为由第二级解码器产生的擦除指针提供所有必要的错误位置。 这种技术使第一级解码器的纠错能力加倍。
    • 14. 发明申请
    • Techniques for performing reduced complexity galois field arithmetic for correcting errors
    • 用于执行降低的复杂度Galois域算法以纠正错误的技术
    • US20060195768A1
    • 2006-08-31
    • US11058596
    • 2005-02-14
    • Martin HassnerVipul SrivastavaKirk Hwang
    • Martin HassnerVipul SrivastavaKirk Hwang
    • H03M13/00
    • H03M13/158G11B20/1833G11B2020/1836H03M13/151
    • Techniques are provided for performing Galois field arithmetic to detect errors in digital data stored on disks. Two 12-bit numbers or two 10-bit numbers are multiplied together in Galois field using tower arithmetic. In the 12-bit embodiment, a base field GF(2) is first extended to GF(23), GF(23) is extended to a first quadratic extension GF(26), and GF(26) is extended to a second quadratic extension GF(212). In the 10-bit embodiment, the base field GF(2) is first extended to GF(25), and GF(25) is extended to a quadratic extension GF(210). Each of the extensions for the 10-bit and 12-bit embodiments is performed using an irreducible polynomial. All of the polynomials used to generate the first and the second quadratic extensions of the Galois field are in the form x2+x+K, where K is an element of the ground field whose absolute trace equals 1.
    • 提供了用于执行伽罗瓦域算术以检测存储在磁盘上的数字数据中的错误的技术。 两个12位数字或两个10位数字在伽罗瓦域中使用塔式算术相乘。 在12位实施例中,首先将GF(2)扩展为GF(2),GF(2)3扩展到第一二次扩展 GF(2 6)和GF(2 6 6)扩展到第二二次扩展GF(2×12)。 在10位实施例中,基区GF(2)首先被扩展到GF(2< 5>),并且GF(2< 5>)被扩展到二次扩展 GF(2×10 6)。 使用不可约多项式来执行10位和12位实施例的每个扩展。 用于产生伽罗瓦域的第一和第二二次扩展的所有多项式都是形式为x + 2 + x + K,其中K是绝对迹线等于1的地面场的元素 。
    • 15. 发明申请
    • Direct partial update of CRC/ECC check bytes
    • 直接部分更新CRC / ECC校验字节
    • US20050060630A1
    • 2005-03-17
    • US10666401
    • 2003-09-17
    • Martin HassnerVipul SrivastavaNyles Heise
    • Martin HassnerVipul SrivastavaNyles Heise
    • G11B20/18H03M13/00
    • G11B20/1866
    • Techniques for correcting data bytes on a data storage disk that have been rewritten are provided. A data storage system generates a long block membership (LBM) byte for each sector. The LBM bytes indicates whether the sector is part of a block of sectors. A data storage system can determine whether a failed sector is part of a long block. The data storage system adds the LBM contributions to the CRC and ECC bytes and then attempts to correct the failed sector. If the correction process is successful, the data storage system declares a miscorrection. If the error is not successfully corrected, the data storage system again adds the LBM contributions to the CRC and ECC bytes and then attempts to correct the failed sector. If the correction process is successful, the data correction is accepted if the error pattern and the check byte overlap is greater than a threshold.
    • 提供了用于校正已经被重写的数据存储盘上的数据字节的技术。 数据存储系统为每个扇区生成长块成员(LBM)字节。 LBM字节指示扇区是扇区块的一部分。 数据存储系统可以确定故障扇区是否是长块的一部分。 数据存储系统将LBM贡献添加到CRC和ECC字节,然后尝试更正故障扇区。 如果校正过程成功,数据存储系统会声明错误修复。 如果错误未成功纠正,则数据存储系统再次将LBM贡献添加到CRC和ECC字节,然后尝试更正故障扇区。 如果校正处理成功,则如果错误模式和校验字节重叠大于阈值,则接受数据校正。
    • 20. 发明授权
    • Decoding error correction codes using a modular single recursion implementation
    • 使用模块化单递归实现解码纠错码
    • US08201061B2
    • 2012-06-12
    • US12270737
    • 2008-11-13
    • Martin HassnerKirk Hwang
    • Martin HassnerKirk Hwang
    • H03M13/00
    • H03M13/1525H03M13/1515
    • Systems and methods are provided for performing error correction decoding. The coefficients of the error locator polynomial are iteratively determined for each codeword using a modular implementation of a single recursion key-equation solver algorithm. According to this implementation, modules are used to calculate the current and previous coefficients of the error locator polynomial. One module is used for each correctable error. The modular single recursion implementation is programmable, because the number of modules can be easily changed to correct any number of correctable errors. Galois field tower arithmetic can be used to calculate the inverse of an error term. Galois field tower arithmetic greatly reduces the size of the inversion unit. The latency time can be reduced by placing the computations of the inverse error term outside the critical path of the error locator polynomial algorithm.
    • 提供了用于执行纠错解码的系统和方法。 使用单个递归密钥方程求解算法的模块化实现,针对每个码字迭代确定误差定位多项式的系数。 根据该实现,使用模块来计算误差定位器多项式的当前系数和先前系数。 一个模块用于每个可纠正的错误。 模块化单递归实现是可编程的,因为可以轻松更改模块的数量以更正任何数量的可纠正错误。 伽罗瓦域塔算术可用于计算误差项的倒数。 伽罗瓦域塔算术大大减小了反演单元的大小。 通过将反向误差项的计算置于误差定位多项式算法的关键路径之外,可以减少延迟时间。