会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 13. 发明授权
    • Composite gate electrode incorporating dopant diffusion-retarding
barrier layer adjacent to underlying gate dielectric
    • 复合栅电极,其与掺杂剂扩散阻滞层结合,邻近底层栅极电介质
    • US5885877A
    • 1999-03-23
    • US837581
    • 1997-04-21
    • Mark I. GardnerRobert DawsonH. Jim Fulford, Jr.Frederick N. HauseDaniel KadoshMark W. MichaelBradley T. MooreDerick J. Wristers
    • Mark I. GardnerRobert DawsonH. Jim Fulford, Jr.Frederick N. HauseDaniel KadoshMark W. MichaelBradley T. MooreDerick J. Wristers
    • H01L21/28H01L29/49H01L21/336H01L21/3205
    • H01L21/28035H01L29/4916
    • A composite gate electrode layer incorporates a diffusion-retarding barrier layer disposed at the bottom of the gate electrode layer to reduce the amount of dopant which diffuses into the gate dielectric layer from the gate electrode layer. A lower nitrogen-containing gate electrode layer provides a diffusion-retarding barrier layer against dopant diffusion into the gate dielectric layer disposed therebelow, and an upper gate electrode layer is formed upon the lower layer and is doped to form a highly conductive layer. Together the first and second gate electrode layers form a composite gate electrode layer which incorporates a diffusion-retarding barrier layer adjacent to the underlying gate dielectric layer. The barrier layer may be formed by annealing a first polysilicon layer in a nitrogen-containing ambient, such as N.sub.2, NO, N.sub.2 O, and NH.sub.3, by implanting a nitrogen-containing material, such as elemental or molecular nitrogen, into a first polysilicon layer, and by in-situ depositing a nitrogen-doped first polysilicon layer. Diffusion of dopants into the gate dielectric layer may be retarded, as most dopant atoms are prevented from diffusing from the composite gate electrode layer at all. In addition, the nitrogen concentration within the gate dielectric layer, particularly at or near the substrate interface, may be maintained at lower concentrations than otherwise necessary to prevent dopant diffusion into the underlying substrate. The present invention is particularly well suited to thin gate dielectrics, such as a those having a thickness less than approximately 60 .ANG. when using a p-type dopant, such as boron.
    • 复合栅极电极层包括设置在栅极电极层底部的扩散阻挡层,以减少从栅极电极层扩散到栅极电介质层中的掺杂剂的量。 下部含氮栅电极层提供阻止扩散阻挡层,以阻止掺杂剂扩散到设置在其下方的栅介质层中,并且在下层上形成上栅极电极层,并且被掺杂以形成高导电层。 第一和第二栅极电极层一起形成复合栅极电极层,该复合栅极电极层包含与下面的栅极电介质层相邻的扩散阻滞阻挡层。 通过将含氮材料(例如元素或分子氮)注入到第一多晶硅层中,可以通过在氮气环境如N 2,NO,N 2 O和NH 3中退火第一多晶硅层来形成阻挡层 ,并通过原位沉积氮掺杂的第一多晶硅层。 完全可以防止掺杂剂扩散到栅极电介质层中,因为大多数掺杂剂原子被阻止从复合栅极电极层扩散。 此外,栅极电介质层内,特别是在衬底界面处或附近的氮浓度可以保持在比防止掺杂剂扩散到下面的衬底中所必需的更低的浓度。 本发明特别适用于薄栅电介质,例如当使用诸如硼的p型掺杂剂时厚度小于约60的薄电介质。
    • 16. 发明授权
    • Trench transistor with insulative spacers
    • 带绝缘垫片的沟槽晶体管
    • US06201278B1
    • 2001-03-13
    • US09028896
    • 1998-02-24
    • Mark I. GardnerRobert DawsonH. Jim Fulford, Jr.Frederick N. HauseMark W. MichaelBradley T. MooreDerick J. Wristers
    • Mark I. GardnerRobert DawsonH. Jim Fulford, Jr.Frederick N. HauseMark W. MichaelBradley T. MooreDerick J. Wristers
    • H01L31062
    • H01L29/7834H01L29/66621
    • An IGFET with a gate electrode and insulative spacers in a trench is disclosed. The IGFET includes a trench with opposing sidewalls and a bottom surface in a semiconductor substrate, a gate insulator on the bottom surface, a gate electrode on the gate insulator, and insulative spacers between the gate electrode and the sidewalls. A method of forming the IGFET includes implanting a doped layer into the substrate, etching completely through the doped layer and partially through the substrate to form the trench and split the doped layer into source and drain regions, depositing a blanket layer of insulative spacer material over the substrate and applying an anisotropic etch to form the insulative spacers on the sidewalls, growing the gate insulator on a central portion of the bottom surface between the insulative spacers, depositing a gate electrode material on the gate insulator and the insulative spacers, polishing the gate electrode material so that the gate electrode is substantially aligned with a top surface of the substrate, and applying a high-temperature anneal to diffuse the source and drain regions beneath the bottom surface, thereby forming a source and drain with channel junctions substantially aligned with the gate electrode. Advantageously, the channel length is significantly smaller than the trench length.
    • 公开了一种具有栅电极和沟槽中的绝缘间隔物的IGFET。 IGFET包括具有相对侧壁的沟槽和半导体衬底中的底表面,底表面上的栅极绝缘体,栅极绝缘体上的栅极电极以及栅电极和侧壁之间的绝缘间隔物。 形成IGFET的方法包括将掺杂层注入到衬底中,通过掺杂层完全蚀刻并部分地穿过衬底以形成沟槽并将掺杂层分为源极和漏极区,将绝缘隔离材料的覆盖层沉积在 基板并施加各向异性蚀刻以在侧壁上形成绝缘间隔物,在绝缘隔离物之间的底表面的中心部分上生长栅极绝缘体,在栅极绝缘体上沉积栅电极材料和绝缘间隔物,抛光栅极 电极材料,使得栅电极基本上与衬底的顶表面对准,并施加高温退火以扩散底表面下面的源极和漏极区域,从而形成源极和漏极,其通道结基本上与 栅电极。 有利地,沟道长度明显小于沟槽长度。
    • 17. 发明授权
    • Method of forming trench transistor with insulative spacers
    • 用绝缘间隔物形成沟槽晶体管的方法
    • US6100146A
    • 2000-08-08
    • US739595
    • 1996-10-30
    • Mark I. GardnerRobert DawsonH. Jim Fulford, Jr.Frederick N. HauseMark W. MichaelBradley T. MooreDerick J. Wristers
    • Mark I. GardnerRobert DawsonH. Jim Fulford, Jr.Frederick N. HauseMark W. MichaelBradley T. MooreDerick J. Wristers
    • H01L21/336H01L29/423H01L29/78
    • H01L29/7834H01L29/66621
    • An IGFET with a gate electrode and insulative spacers in a trench is disclosed. The IGFET includes a trench with opposing sidewalls and a bottom surface in a semiconductor substrate, a gate insulator on the bottom surface, a gate electrode on the gate insulator, and insulative spacers between the gate electrode and the sidewalls. A method of forming the IGFET includes implanting a doped layer into the substrate, etching completely through the doped layer and partially through the substrate to form the trench and split the doped layer into source and drain regions, depositing a blanket layer of insulative spacer material over the substrate and applying an anisotropic etch to form the insulative spacers on the sidewalls, growing the gate insulator on a central portion of the bottom surface between the insulative spacers, depositing a gate electrode material on the gate insulator and the insulative spacers, polishing the gate electrode material so that the gate electrode is substantially aligned with a top surface of the substrate, and applying a high-temperature anneal to diffuse the source and drain regions beneath the bottom surface, thereby forming a source and drain with channel junctions substantially aligned with the gate electrode. Advantageously, the channel length is significantly smaller than the trench length.
    • 公开了一种具有栅电极和沟槽中的绝缘间隔物的IGFET。 IGFET包括具有相对侧壁的沟槽和半导体衬底中的底表面,底表面上的栅极绝缘体,栅极绝缘体上的栅极电极以及栅电极和侧壁之间的绝缘间隔物。 形成IGFET的方法包括将掺杂层注入到衬底中,通过掺杂层完全蚀刻并部分地穿过衬底以形成沟槽并将掺杂层分为源极和漏极区,将绝缘隔离材料的覆盖层沉积在 基板并施加各向异性蚀刻以在侧壁上形成绝缘间隔物,在绝缘隔离物之间的底表面的中心部分上生长栅极绝缘体,在栅极绝缘体上沉积栅电极材料和绝缘间隔物,抛光栅极 电极材料,使得栅电极基本上与衬底的顶表面对准,并施加高温退火以扩散底表面下面的源极和漏极区域,从而形成源极和漏极,其通道结基本上与 栅电极。 有利地,沟道长度明显小于沟槽长度。
    • 18. 发明授权
    • Ion implantation into a gate electrode layer using an implant profile
displacement layer
    • 使用植入物轮廓位移层将离子注入到栅极电极层中
    • US06080629A
    • 2000-06-27
    • US837579
    • 1997-04-21
    • Mark I. GardnerRobert DawsonH. Jim Fulford, Jr.Frederick N. HauseMark W. MichaelBradley T. MooreDerick J. Wristers
    • Mark I. GardnerRobert DawsonH. Jim Fulford, Jr.Frederick N. HauseMark W. MichaelBradley T. MooreDerick J. Wristers
    • H01L21/28H01L21/8238H01L21/336
    • H01L21/823842H01L21/28035
    • A method for implanting a dopant into a thin gate electrode layer includes forming a displacement layer on the gate electrode layer to form a combined displacement/gate electrode layer, and implanting the dopant into the combined layer. The implanted dopant profile may substantially reside entirely within the gate electrode layer, or may substantially reside partially within the gate electrode layer and partially within the displacement layer. If the displacement layer is ultimately removed, at least some portion of the implanted dopant remains within the gate electrode layer. The gate electrode layer may be implanted before or after patterning and etching the gate electrode layer to define gate electrodes. Moreover, two different selective implants may be used to define separate regions of differing dopant concentration, such as P-type polysilicon and N-type polysilicon regions. Each region may utilize separate displacement layer thicknesses, which allows dopants of different atomic mass to use similar implant energies. A higher implant energy may be used to dope a gate electrode layer which is much thinner than normal range statistics require, without implant penetration into underlying structures.
    • 将掺杂剂注入到薄栅电极层中的方法包括在栅电极层上形成位移层以形成组合位移/栅极电极层,并将掺杂剂注入到组合层中。 注入的掺杂剂分布基本上完全位于栅极电极层内,或者基本上部分地位于栅极电极层内部分地位于位移层内。 如果位移层最终被去除,则注入的掺杂剂的至少一部分保留在栅电极层内。 栅极电极层可以在图案化之前或之后被注入,并蚀刻栅电极层以限定栅电极。 此外,可以使用两种不同的选择性植入来限定不同掺杂剂浓度的分开的区域,例如P型多晶硅和N型多晶硅区域。 每个区域可以利用单独的位移层厚度,这允许不同原子质量的掺杂剂使用类似的注入能量。 可以使用较高的注入能量来掺杂比正常范围统计要求更薄的栅极电极层,而不会使植入物渗入下面的结构。