会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 12. 发明授权
    • Polarization enhanced avalanche photodetector and method thereof
    • 极化增强雪崩光电探测器及其方法
    • US08269223B2
    • 2012-09-18
    • US13116667
    • 2011-05-26
    • Michael WrabackPaul ShenAnand V Sampath
    • Michael WrabackPaul ShenAnand V Sampath
    • H01L29/15
    • H01L31/1075H01L31/03048H01L31/0312Y02E10/544
    • An avalanche photodetector comprising a multiplication layer formed of a first material having a first polarization; the multiplication layer having a first electric field upon application of a bias voltage; an absorption layer formed of a second material having a second polarization forming an interface with the multiplication layer; the absorption layer having a second electric field upon application of the bias voltage, the second electric field being less than the first electric field or substantially zero, carriers created by light absorbed in the absorption layer being multiplied in the multiplication layer due to the first electric field; the absorption layer having a second polarization which is greater or less than the first polarization to thereby create an interface charge; the interface charge being positive when the first material predominately multiplies holes, the interface charge being negative when the first material predominately multiplies electrons, the change in electric field at the interface occurring abruptly at the atomic level; the interface charge creating electric field discontinuity causing first electric field to attain the breakdown field in the multiplication region and the second electric field to be low or zero in the absorption layer to thereby eliminate the need for a doped charge layer and the associated thickness of the doped charge layer required to transition from the low field to the high field. Also claimed is a method of making.
    • 一种雪崩光电探测器,包括由具有第一极化的第一材料形成的倍增层; 所述乘法层在施加偏置电压时具有第一电场; 由具有与所述乘法层形成界面的第二极化的第二材料形成的吸收层; 所述吸收层在施加所述偏置电压时具有第二电场,所述第二电场小于所述第一电场或基本为零,由吸收层吸收的光产生的载流子由于所述第一电场而被乘以所述乘法层 领域; 所述吸收层具有大于或小于所述第一极化的第二极化,从而产生界面电荷; 当第一材料主要乘以孔时,界面电荷为正,当第一材料主要乘以电子时,界面电荷为负,界面处的电场在原子级突然发生变化; 所述接口电荷产生电场不连续性使得第一电场在所述乘法区域中获得击穿场,并且所述第二电场在所述吸收层中为低或零,从而消除对掺杂电荷层的需要和相关联的厚度 掺杂电荷层需要从低场转换到高场。 还要求保护的是一种制造方法。
    • 13. 发明授权
    • Method and apparatus for detection of terahertz electric fields using polarization-sensitive excitonic electroabsorption
    • 使用极化敏感激子电吸收检测太赫兹电场的方法和装置
    • US06476596B1
    • 2002-11-05
    • US09459386
    • 1999-12-06
    • Michael WrabackPaul ShenMitra Dutta
    • Michael WrabackPaul ShenMitra Dutta
    • G01R3102
    • B82Y20/00G01N21/3581H01L31/035236
    • A terahertz electromagnetic energy detector comprises a (100) oriented multiple quantum well thermally bonded to a first transparent substrate having a direction dependent thermal coefficient of expansion such that this coefficient matches the thermal coefficient of expansion of MQW in one direction but different form the direction-dependent thermal coefficient of expansion of the MQW in a perpendicular direction. The resultant internal thermally induced anisotropic strain leads to a polarization dependence of the optical absorption that is strongest near the lowest heavy-hole and light-hole exciton peaks. A second transparent substrate is placed beneath the first transparent substrate and is oriented so that its thermal coefficients of expansion act in a direction perpendicular to those of the first transparent substrate so that the accumulated phase retardation of the optical wave associated with birefringence of the substrate is effectively cancelled. A transverse electric and electromagnetic field is applied across the plane of the quantum well layers to ionize the excitons, which produces an anisotropic bleaching and concomitant line broadening of the anisotropic excitonic absorption. This phenomenon results in a polarization rotation of the transmitted optical field such that light passing through the device may be detected by a photosensitive polarization detector. The device is capable of effectively measuring the phase and frequency of terahertz energy over a wide bandwidth.
    • 太赫兹电磁能量检测器包括热粘合到具有方向依赖的热膨胀系数的第一透明衬底的(100)定向多量子阱,使得该系数与MQW在一个方向上的热膨胀系数匹配但不同,形成方向 - 依赖于MQW在垂直方向上的热膨胀系数。 所得的内部热诱导各向异性应变导致在最低重孔和光空穴激子峰附近最强的光吸收的偏振依赖性。 将第二透明基板放置在第一透明基板下方并且被定向成使得其热膨胀系数在垂直于第一透明基板的方向上起作用,使得与基板的双折射相关联的光波的累积相位延迟为 有效取消。 跨越量子阱层的平面上施加横向电场和电磁场,以使激子离子化,这产生各向异性漂白和各向异性激子吸收的伴随线宽。 这种现象导致透射光场的偏振旋转,使得通过该器件的光可以由光敏极化检测器检测。 该器件能够在宽带宽内有效测量太赫兹能量的相位和频率。
    • 14. 发明申请
    • SEMICONDUCTOR PHOTODETECTOR WITH TRANSPARENT INTERFACE CHARGE CONTROL LAYER AND METHOD THEREOF
    • 具有透明接口充电控制层的半导体光电二极管及其方法
    • US20110291108A1
    • 2011-12-01
    • US13114254
    • 2011-05-24
    • Paul H. ShenMichael WrabackAnand V. Sampath
    • Paul H. ShenMichael WrabackAnand V. Sampath
    • H01L31/028H01L31/0352
    • H01L31/03687H01L31/105H01L31/107H01L31/1812Y02E10/548
    • A detection device comprising a photodetector comprising a first semiconductor layer through which light first enters the photodetector; the first semiconductor layer to semiconductor material crystal lattice which terminates at an interface; the discontinuity of the semiconductor crystal lattice at the interface creating a first interface charge; the first semiconductor layer being an absorption layer in which photons in a predetermined wavelength range are absorbed and create photogenerated carriers; and a second polar semiconductor layer deposited on the crystal lattice of the first semiconductor layer, the second polar semiconductor being substantially transparent to light in the predetermined wavelength range, the second polar semiconductor layer having a total polarization different from the first semiconductor layer so that a second interface charge is induced at the interface between the first and second semiconductor layers; the induced second interface charge reduces or substantially cancels the first interface charge; whereby the reduction or substantial cancellation of the surface charge in the first semiconductor layer increases the collection of photogenerated carriers by the photodetector. A method of improving the quantum efficiency of a semiconductor photodetector comprising providing a semiconductor photodetector having a first layer which has a first interface through which light first enters the semiconductor photodetector; placing a layer of polar material transparent to the band of detection wavelengths that has a polarization substantially different than the polarization of the first layer such that the polarization charge induced at the interface between the layer of polar material and the first surface results in decreased interface recombination of photogenerated minority carriers and an increase in quantum efficiency of the photodetector.
    • 一种检测装置,包括光检测器,其包括第一半导体层,光首先通过该第一半导体层进入光电检测器 在界面处终止的第一半导体层到半导体材料晶格; 在界面处的半导体晶格的不连续性产生第一界面电荷; 第一半导体层是其中吸收预定波长范围的光子并产生光生载流子的吸收层; 以及沉积在所述第一半导体层的晶格上的第二极性半导体层,所述第二极性半导体对于所述预定波长范围内的光基本上是透明的,所述第二极性半导体层具有与所述第一半导体层不同的总偏振, 在第一和第二半导体层之间的界面处感应出第二界面电荷; 感应的第二接口电荷减少或基本上抵消第一接口电荷; 由此减少或基本消除第一半导体层中的表面电荷增加了光电检测器对光生载流子的收集。 一种提高半导体光电检测器的量子效率的方法,包括提供具有第一层的半导体光电检测器,该第一层具有第一界面,光通过该第一界面首先进入半导体光电检测器; 将具有与第一层的极化基本不同的极化的检测波长带透明的极性材料层透明,使得在极性材料层和第一表面之间的界面处诱导的极化电荷导致界面复合减少 的光产生的少数载流子和光电检测器的量子效率的提高。
    • 17. 发明申请
    • Creation of anisotropic strain in semiconductor quantum well
    • 在半导体量子阱中形成各向异性应变
    • US20060169970A1
    • 2006-08-03
    • US11051270
    • 2005-02-03
    • Michael WrabackMitra DuttaPaul Shen
    • Michael WrabackMitra DuttaPaul Shen
    • H01L31/109
    • G02F1/01725B82Y20/00G02F2001/0157H01L21/02403H01L21/02507H01L21/0254H01L21/02546H01L29/2003H01L29/205H01L33/06
    • Methods and devices for creating an anisotropic strain in a semiconductor quantum well structure to induce anisotropy thereof are disclosed herein. Initially, a substrate is provided, and a quantum well structure formed upon the substrate. A first crystalline layer (e.g., a GaAs layer) having a first crystalline phase can then be deposited upon the quantum well structure. Thereafter, a second crystalline layer (e.g., a GaN layer) having a second crystalline phase and a thickness thereof can be formed upon the first crystalline layer to thereby induce an anisotropic strain in the quantum well structure to produce a quantum well device thereof. Additionally, the second crystalline layer (e.g., GaN) can be formed from a transparent material and utilized as an anti-reflection layer. By properly choosing the thickness of the second crystalline layer (e.g., a GaN layer), a desired anisotropic strain as well as a desired anti-reflection wavelength can be achieved.
    • 本文公开了在半导体量子阱结构中产生各向异性应变以诱发其各向异性的方法和装置。 首先,提供衬底和形成在衬底上的量子阱结构。 具有第一结晶相的第一晶体层(例如,GaAs层)可以沉积在量子阱结构上。 此后,可以在第一结晶层上形成具有第二结晶相和其厚度的第二结晶层(例如,GaN层),从而在量子阱结构中引起各向异性应变以产生其量子阱器件。 另外,第二晶体层(例如,GaN)可以由透明材料形成并用作抗反射层。 通过适当地选择第二结晶层(例如,GaN层)的厚度,可以实现期望的各向异性应变以及期望的抗反射波长。