会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 14. 发明授权
    • Process for the selective deposition of particulate material
    • 颗粒材料的选择性沉积工艺
    • US07220456B2
    • 2007-05-22
    • US10815010
    • 2004-03-31
    • Rajesh V. MehtaRamesh JagannathanSeshadri JagannathanDavid J. Nelson
    • Rajesh V. MehtaRamesh JagannathanSeshadri JagannathanDavid J. Nelson
    • B05D5/00
    • B05D1/025B05D1/12B05D2401/90
    • A process for the patterning of a desired substance on a surface includes: (i) charging a particle formation vessel with a compressed fluid; (ii) introducing into the particle formation vessel a first feed stream comprising a solvent and the desired substance dissolved therein and a second feed stream comprising the compressed fluid, wherein the desired substance is less soluble in the compressed fluid relative to its solubility in the solvent and the solvent is soluble in the compressed fluid, and wherein the first feed stream is dispersed in the compressed fluid, allowing extraction of the solvent into the compressed fluid and precipitation of particles of the desired substance; (iii) exhausting compressed fluid, solvent and the desired substance from the particle formation vessel at a rate substantially equal to a rate of addition of such components to the vessel in step (ii) through a restrictive passage to a lower pressure whereby the compressed fluid is transformed to a gaseous state, and wherein the restrictive passage includes a discharge device that produces a shaped beam of particles of the desired substance at a point beyond an outlet of the discharge device, where the fluid is in a gaseous state at a location before or beyond the outlet of the discharge device; and (iv) exposing a receiver surface to the shaped beam of particles of the desired substance and selectively depositing a pattern of particles on the receiver surface.
    • 用于在表面上图案化所需物质的方法包括:(i)用压缩流体填充颗粒形成容器; (ii)向颗粒形成容器中引入包含溶剂和所需物质溶解在其中的第一进料流和包含压缩流体的第二进料流,其中所需物质相对于其在溶剂中的溶解度较不溶于压缩流体 并且溶剂可溶于压缩流体中,并且其中第一进料流分散在压缩流体中,允许将溶剂萃取到压缩流体中并沉淀所需物质的颗粒; (iii)通过限制性通道将压缩流体,溶剂和所需物质从所述颗粒形成容器排出,其速率基本上等于在步骤(ii)中通过限制通道将这些组分添加到容器中的速率,由此压缩流体 转化为气态,并且其中限制通道包括排出装置,其在超出排放装置的出口的点处产生所需物质的成形颗粒束,其中流体在气体状态处于位于之前的位置处 或超出排出装置的出口; 和(iv)将接收器表面暴露于所需物质的成形的颗粒束并选择性地在接收器表面上沉积颗粒图案。
    • 15. 发明授权
    • Process for the preparation of high chloride emulsions containing iodide
    • 制备含有碘化物的高氯化物乳液的方法
    • US06265145B1
    • 2001-07-24
    • US09475405
    • 1999-12-30
    • Rajesh V. MehtaJerzy A. BudzJess B. Hendricks, IIIHeinz E. StapelfeldtSeshadri JagannathanRamesh Jagannathan
    • Rajesh V. MehtaJerzy A. BudzJess B. Hendricks, IIIHeinz E. StapelfeldtSeshadri JagannathanRamesh Jagannathan
    • G03C1005
    • G03C1/015G03C1/035G03C1/07G03C2001/03517G03C2200/01
    • A process for the preparation of a radiation-sensitive silver halide emulsion comprised of high chloride cubical silver halide grains containing from 0.05 to 3 mole percent iodide, based on total silver, where the iodide is incorporated in the grains in a controlled, non-uniform distribution forming a core containing at least 50 percent of total silver, an iodide free surface shell having a thickness of greater than 50 Å, and a sub-surface shell that contains a maximum iodide concentration is disclosed, the process comprising: (a) providing in a stirred reaction vessel a dispersing medium and host high chloride silver halide cubical grains comprising a speed enhancing amount of iodide, and (b) precipitating silver halide onto the host grains by introducing at least a silver salt solution into the dispersing medium at a rate such that the normalized molar addition rate, Rn, is above 3.0×10−2 min−1, Rn satisfying the formula: Rn=[Qf×Cf]/M where Qf is the volumetric rate of addition, in L/min, of silver salt solution into the reaction vessel; Cf is the concentration, in moles/L, of the silver salt solution; and M is total moles of silver halide in the host grains in the reaction vessel at the precise moment of addition of the silver salt solution. In a further aspect, this invention is directed towards a photographic recording element comprising a support and at least one light sensitive silver halide emulsion layer comprising silver halide grains prepared as described above. The advantages of the invention are generally accomplished in accordance with the discovery that when the exterior portion of profiled silver iodochloride grains are grown under specific conditions of high molar addition rates, iodochloride emulsions of enhanced sensitivity and photographic curve shape are produced, as speed can be increased while keeping fog to a low level.
    • 一种用于制备辐射敏感的卤化银乳剂的方法,其包含基于总银含有0.05至3摩尔%碘化物的高氯化物立方体卤化银颗粒,其中碘化物以受控的,不均匀的方式掺入颗粒中 分布形成包含总银的至少50%,厚度大于Å的无碘化物表面壳和含有最大碘化物浓度的亚表面壳的芯,该方法包括:(a)提供 在搅拌的反应容器中,分散介质和包含加速量的碘化物的高氯化物卤化银立方晶粒和(b)通过将至少一种银盐溶液以一定速率引入到分散介质中而将卤化银沉淀到主体颗粒上 使得归一化的摩尔加成速率Rn高于3.0×10 -2分钟-1,Rn满足下式:其中Qf是硅的体积加入速率(L / min) 将盐溶液加入到反应容器中; Cf是银盐溶液的浓度,以摩尔/ L表示; 并且M是在银盐溶液的添加的精确时刻反应容器中的主体颗粒中卤化银的总摩尔数。 在另一方面,本发明涉及一种照相记录元件,其包括载体和包含如上所述制备的卤化银颗粒的至少一种感光卤化银乳剂层。 本发明的优点通常根据以下发现来实现:当异氰酸银碘化银颗粒的外部部分在高摩尔添加速率的特定条件下生长时,产生增强灵敏度的碘氯化物乳剂和照相曲线形状,因为速度可以 在将雾保持在低水平的同时增加。
    • 16. 发明授权
    • Process for the deposition of uniform layer of particulate material
    • 沉积均匀颗粒材料层的工艺
    • US07223445B2
    • 2007-05-29
    • US10815026
    • 2004-03-31
    • Rajesh V. MehtaRamesh JagannathanSeshadri JagannathanKelly S. RobinsonKaren L. PondBradley M. Houghtaling
    • Rajesh V. MehtaRamesh JagannathanSeshadri JagannathanKelly S. RobinsonKaren L. PondBradley M. Houghtaling
    • B05D1/06B05D1/12
    • B05D1/26B05D1/007B05D1/06B05D1/12B05D2401/32B05D2401/90G03C1/74
    • A process for the deposition of particulate material of a desired substance on a surface includes: (i) charging a particle formation vessel with a compressed fluid; (ii) introducing into the particle formation vessel a first feed stream comprising a solvent and the desired substance dissolved therein and a second feed stream comprising the compressed fluid, wherein the desired substance is less soluble in the compressed fluid relative to its solubility in the solvent and the solvent is soluble in the compressed fluid, and wherein the first feed stream is dispersed in the compressed fluid, allowing extraction of the solvent into the compressed fluid and precipitation of particles of the desired substance; (iii) exhausting compressed fluid, solvent and the desired substance from the particle formation vessel at a rate substantially equal to the rate of addition of such components to the vessel in step (ii) through a restrictive passage to a lower pressure whereby the compressed fluid is transformed to a gaseous state and a flow of particles of the desired substance is formed; and (iv) exposing a receiver surface to the exhausted flow of particles of the desired substance and depositing a uniform layer of particles on the receiver surface.
    • 将所需物质的颗粒材料沉积在表面上的方法包括:(i)用压缩流体填充颗粒形成容器; (ii)向颗粒形成容器中引入包含溶剂和所需物质溶解在其中的第一进料流和包含压缩流体的第二进料流,其中所需物质相对于其在溶剂中的溶解度较不溶于压缩流体 并且溶剂可溶于压缩流体中,并且其中第一进料流分散在压缩流体中,允许将溶剂萃取到压缩流体中并沉淀所需物质的颗粒; (iii)通过限制性通道将压缩流体,溶剂和所需物质从所述颗粒形成容器排出,其速率基本上等于步骤(ii)中通过限制性通道将这些组分加入到容器中的速率,由此压缩流体 转化为气态,形成所需物质的颗粒流; 和(iv)将接收器表面暴露于所需物质的排出的颗粒流中,并在接收器表面上沉积均匀的颗粒层。
    • 17. 发明授权
    • Self assembled organic nanocrystal superlattices
    • 自组装有机纳米晶体超晶格
    • US07097902B2
    • 2006-08-29
    • US10744539
    • 2003-12-22
    • Thomas N. BlantonRamesh JagannathanSeshadri JagannathanRajesh V. Mehta
    • Thomas N. BlantonRamesh JagannathanSeshadri JagannathanRajesh V. Mehta
    • B32B5/16
    • C30B29/54C30B29/68Y10T428/25Y10T428/258Y10T428/26Y10T428/263Y10T428/265Y10T428/268Y10T428/31504
    • A process for the preparation of a self assembled superlattice thin film of organic nanocrystal particles is described comprising: (i) combining one or more functional organic material to be precipitated as nanocrystal particles and one or more surface active material in a compressed CO2 phase with a density of at least 0.1 g/cc, where the functional material is substantially insoluble in the compressed CO2 in the absence of the surfactant, the surfactant comprises a compressed CO2-philic portion and a functional material-philic portion, and the compressed CO2 phase, functional material and surfactant interact to form an aggregated system having a continuous compressed CO2 phase and a plurality of aggregates comprising surfactant and functional material molecules of average diameter less than 50 nanometers dispersed therein; (ii) rapidly depressurizing the compressed CO2 phase thereby precipitating the dispersed functional and surfactant materials in the form of composite organic nanocrystals of average diameter less than 50 nanometers, and (iii) depositing the organic nanocrystals on a substrate surface, wherein the organic nanocrystals form a thin film having an ionic content of less than 0.001 M in equivalent sodium chloride concentration on the substrate surface, and the thin film exhibits a long range periodicity in the arrangement of the organic nanocrystals in a self assembled superlattice structure, as evidenced by x-ray diffraction.
    • 描述了制备有机纳米晶体颗粒的自组装超晶格薄膜的方法,其包括:(i)将一种或多种作为纳米晶体颗粒和一种或多种表面活性材料沉淀的官能有机材料合并在压缩的CO 密度为至少0.1g / cc的2相,其中功能材料在不存在表面活性剂的情况下基本上不溶于压缩的CO 2,表面活性剂包括压缩的CO 2, SUB> 2亲水部分和功能材料亲水部分,并且压缩的CO 2相,功能材料和表面活性剂相互作用以形成具有连续压缩CO 2的聚集体系, 包含平均直径小于50纳米的表面活性剂和功能材料分子的多个聚集体分散在其中; (ii)使压缩的CO 2相快速减压,从而使平均直径小于50纳米的复合有机纳米晶体形式的分散的功能性和表面活性剂材料沉淀,和(iii)将有机纳米晶体沉积在 衬底表面,其中有机纳米晶体形成离子含量小于0.001M的氯化钠浓度在基材表面上的薄膜,并且薄膜在有机纳米晶体在自组装中的布置方面表现出长程周期性 超晶格结构,如x射线衍射所证明的。