会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 11. 发明授权
    • Latch-up resistant CMOS structure
    • 防闩锁CMOS结构
    • US4947227A
    • 1990-08-07
    • US776553
    • 1985-09-16
    • Clarence W. Teng
    • Clarence W. Teng
    • H01L27/08H01L21/762H01L21/8234H01L27/088H01L27/092
    • H01L27/0921
    • A latch-up free CMOS structure and method of fabrication thereof is disclosed. A P-type substrate (40) is appropriately masked to form a plurality of sites in which isolated wells (50) are formed. A thermal oxide layer (56) is grown on the surface of each well (50), and a boron channel stop (62) implanted therearound. Polysilicon semiconductor material (68) is formed within each well, and implant doped to form an N-well (76) of material. The P-substrate (40) is planarized. PMOS transistors are formed within the oxide isolated N-wells (76), while NMOS transistors are formed in the P-substrate (40) outside the wells.
    • 公开了一种无闩锁CMOS结构及其制造方法。 适当地掩蔽P型衬底(40)以形成其中形成隔离阱(50)的多个位置。 在每个孔(50)的表面上生长热氧化物层(56),并且在其周围植入硼通道停止件(62)。 在每个阱内形成多晶硅半导体材料(68),并且掺杂掺杂以形成材料的N阱(76)。 P基板(40)被平坦化。 在氧化物隔离N阱(76)内形成PMOS晶体管,而在阱外部的P衬底(40)中形成NMOS晶体管。
    • 12. 发明授权
    • Dram cell and method
    • 戏剧细胞和方法
    • US4916524A
    • 1990-04-10
    • US300467
    • 1989-01-23
    • Clarence W. TengRobert R. DoeringAshwin H. Shah
    • Clarence W. TengRobert R. DoeringAshwin H. Shah
    • H01L21/225H01L21/8242H01L27/108
    • H01L27/10864H01L21/2254H01L27/10841
    • The described embodiments of the present invention provide structures, and a method for fabricating those structures, which include a memory cell formed within a single trench. A trench is formed in the surface of a semiconductor substrate. The bottom portion of the trench is filled with polycrystalline silicon to form one plate of a storage capacitor. The substrate serves as the other plate of the capacitor. The remaining portion of the trench is then filled with an insulating material such as silicon dioxide. A pattern is then etched into the silicon dioxide when opens a portion of the sidewall and the top portion of the trench down to the polycrystalline capacitor plate. A contact is then formed between the polycrystalline capacitor plate and the substrate. Dopant atoms diffuse through the contact to form a source region on a sidewall of the trench. A gate insulator is formed by oxidation and a drain is formed at the surface of the trench adjacent to the mouth of the trench. Conductive material is then formed inside the open portion of the upper portion of the trench thereby forming a transistor connecting the upper plate of the storage capacitor to a drain region on the surface of the semiconductor substrate.
    • 本发明的所描述的实施例提供了包括形成在单个沟槽内的存储单元的结构和制造这些结构的方法。 在半导体衬底的表面形成沟槽。 沟槽的底部填充有多晶硅以形成存储电容器的一个板。 该基板用作电容器的另一个板。 然后用绝缘材料如二氧化硅填充沟槽的剩余部分。 然后当将侧壁的一部分和沟槽的顶部部分向下切割到多晶电容器板时,将图案蚀刻到二氧化硅中。 然后在多晶电容器板和衬底之间形成接触。 掺杂原子通过接触扩散以在沟槽的侧壁上形成源区。 通过氧化形成栅极绝缘体,并且在与沟槽的口相邻的沟槽的表面处形成漏极。 然后,在沟槽上部的开口部分形成导电材料,从而形成将存储电容器的上板连接到半导体衬底的表面上的漏极区域的晶体管。
    • 13. 发明授权
    • Integrated circuit isolation process
    • 集成电路隔离过程
    • US4842675A
    • 1989-06-27
    • US882732
    • 1986-07-07
    • Richard A. ChapmanClarence W. Teng
    • Richard A. ChapmanClarence W. Teng
    • H01L21/316H01L21/76H01L21/762
    • H01L21/76229H01L21/76235Y10S148/05
    • A multiple recess isolation technology avoids stress induced defects while providing a substantially planar surface. A silicon substrate (10) is patterned and etched, creating active moat regions (18) and recesses (20a-b and 21a-b). The recesses are filled with oxide by growing a field oxide (40) in wide recessed regions (21) using a LOCOS process, while depositing a planarization field oxide (44) in narrow recessed regions (20). After etching the structure to obtain a planar surface, standard procedures are used to fabricate the active devices. The process uses a single photolithographic masking step and results in only a very small loss of the width electrically active regions.
    • 多凹陷隔离技术避免了应力诱发的缺陷,同时提供了基本平坦的表面。 对硅衬底(10)进行构图和蚀刻,形成活动的护套区域(18)和凹槽(20a-b和21a-b)。 通过使用LOCOS工艺在宽的凹陷区域(21)中生长场氧化物(40),同时在窄的凹陷区域(20)中沉积平坦化场氧化物(44)来使凹陷填充氧化物。 在蚀刻结构以获得平坦表面之后,使用标准程序来制造有源器件。 该过程使用单个光刻掩模步骤,并且导致宽度电活性区域的非常小的损失。
    • 14. 发明授权
    • Process of making IC isolation structure
    • 制造IC隔离结构的过程
    • US4660278A
    • 1987-04-28
    • US749952
    • 1985-06-26
    • Clarence W. Teng
    • Clarence W. Teng
    • H01L21/76H01L21/20H01L21/74H01L21/762H01L21/302
    • H01L21/74H01L21/02381H01L21/02532H01L21/02639H01L21/76294
    • Using a structure according to one embodiment of the present invention, active elements in integrated circuitry may be completely isolated from other elements in the integrated circuitry by silicon dioxide regions surrounding the sides of the region containing the active element and a buried diffusion beneath the active element extending to all sides of the isolating silicon dioxide regions.In one embodiment of the present invention, an isolation structure is fabricated by etching a silicon substrate to remove the silicon from the entire region occupied by the isolated active area and the isolation structure of this embodiment of the invention. A conformal layer of silicon dioxide, or other dielectric material, is then deposited on the surface of the silicon substrate. The conformal silicon dioxide layer is then anisotropically etched to remove the silicon dioxide on the bottom of the isolation region but still provide a sidewall region of silicon dioxide on the sides of the isolation region. The bottom of the isolation region is then implanted with dopant ions to provide a depletion region in the bottom of the isolation region. Crystalline silicon is then grown from the base of the isolation region to form the isolation region flush with the surface of the substrate using selective epitaxial growth.
    • 使用根据本发明的一个实施例的结构,集成电路中的有源元件可以通过围绕包含有源元件的区域的侧面的二氧化硅区域和在有源元件下方的埋入扩散与集成电路中的其它元件完全隔离 延伸到隔离二氧化硅区域的所有侧面。 在本发明的一个实施例中,通过蚀刻硅衬底以从本发明的该实施例的隔离有源区域和隔离结构占据的整个区域中除去硅来制造隔离结构。 然后将二氧化硅或其它电介质材料的保形层沉积在硅衬底的表面上。 然后各向异性蚀刻保形二氧化硅层以去除隔离区域的底部上的二氧化硅,但是仍然在隔离区域的侧面上提供二氧化硅的侧壁区域。 然后用掺杂剂离子注入隔离区的底部,以在隔离区的底部提供耗尽区。 然后从隔离区域的基底生长晶体硅,以使用选择性外延生长形成与衬底的表面齐平的隔离区域。