会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 14. 发明申请
    • Interactive images
    • 交互式图像
    • US20050104966A1
    • 2005-05-19
    • US11020943
    • 2004-12-22
    • Bernhard SchoelkopfKentaro ToyamaMatthew Uyttendaele
    • Bernhard SchoelkopfKentaro ToyamaMatthew Uyttendaele
    • G06K9/00G06T11/00H04N5/225
    • G06T11/001
    • A system and process for creating an interactive digital image, which allows a viewer to interact with a displayed image so as to change it with regard to a desired effect, such as exposure, focus or color, among others. An interactive image includes representative images which depict a scene with some image parameter varying between them. The interactive image also includes an index image, whose pixels each identify the representative image that exhibits the desired effect related to the varied image parameter at a corresponding pixel location. For example, a pixel of the index image might identify the representative image having a correspondingly-located pixel that depicts a portion of the scene at the sharpest focus. One primary form of interaction involves selecting a pixel of a displayed image whereupon the representative image identified in the index image at a corresponding pixel location is displayed in lieu of the currently displayed image.
    • 一种用于创建交互式数字图像的系统和过程,其允许观看者与显示的图像交互,以便根据期望的效果(例如曝光,聚焦或颜色等)改变它。 交互式图像包括描绘具有在它们之间变化的一些图像参数的场景的代表性图像。 交互式图像还包括索引图像,其像素每个标识在相应像素位置呈现与变化的图像参数相关的期望效果的代表图像。 例如,索引图像的像素可以识别具有对应位置的像素的代表图像,其描绘最尖锐焦点的场景的一部分。 一种主要的交互形式涉及选择显示图像的像素,由此显示在相应像素位置处的索引图像中标识的代表图像来代替当前显示的图像。
    • 19. 发明授权
    • Method for feature selection and for evaluating features identified as significant for classifying data
    • 用于特征选择和评估对分类数据有重要意义的特征的方法
    • US07970718B2
    • 2011-06-28
    • US12890705
    • 2010-09-26
    • Isabelle GuyonAndre ElisseeffBernhard SchoelkopfJason Aaron Edward WestonFernando Perez-Cruz
    • Isabelle GuyonAndre ElisseeffBernhard SchoelkopfJason Aaron Edward WestonFernando Perez-Cruz
    • G06F15/18
    • G06F19/24G06F19/20G06K9/6231
    • A group of features that has been identified as “significant” in being able to separate data into classes is evaluated using a support vector machine which separates the dataset into classes one feature at a time. After separation, an extremal margin value is assigned to each feature based on the distance between the lowest feature value in the first class and the highest feature value in the second class. Separately, extremal margin values are calculated for a normal distribution within a large number of randomly drawn example sets for the two classes to determine the number of examples within the normal distribution that would have a specified extremal margin value. Using p-values calculated for the normal distribution, a desired p-value is selected. The specified extremal margin value corresponding to the selected p-value is compared to the calculated extremal margin values for the group of features. The features in the group that have a calculated extremal margin value less than the specified margin value are labeled as falsely significant.
    • 使用支持向量机将资源分为类别的“特征”组合进行评估,该支持向量机将数据集一次分为一个特征。 分离后,基于第一类中最低特征值与第二类中最高特征值之间的距离,为每个特征分配极值边缘值。 另外,对于两个类别的大量随机绘制的示例集合中的正态分布计算极值边界值,以确定具有指定的极值边界值的正态分布内的示例的数量。 使用为正态分布计算的p值,选择所需的p值。 对应于所选择的p值的指定极值余量值与所计算的特征组的极值边际值进行比较。 计算的极值余量值小于指定余量值的组中的特征被标记为错误显着。