会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 11. 发明授权
    • Modular, high energy, widely-tunable ultrafast fiber source
    • US07167300B2
    • 2007-01-23
    • US11074765
    • 2005-03-09
    • Martin E. FermannAlmantas GalvanauskasDonald J. Harter
    • Martin E. FermannAlmantas GalvanauskasDonald J. Harter
    • H01S3/08
    • H01S3/1115H01S3/0057H01S3/0675H01S3/06754H01S3/094019H01S3/094042H01S3/109H01S3/1112H01S3/1616H01S3/1618H01S3/302
    • A modular, compact and widely tunable laser system for the efficient generation of high peak and high average power ultrashort pulses. Modularity is ensured by the implementation of interchangeable amplifier components. System compactness is ensured by employing efficient fiber amplifiers, directly or indirectly pumped by diode lasers. Peak power handling capability of the fiber amplifiers is expanded by using optimized pulse shapes, as well as dispersively broadened pulses. Dispersive broadening is introduced by dispersive pulse stretching in the presence of self-phase modulation and gain, resulting in the formation of high-power parabolic pulses. In addition, dispersive broadening is also introduced by simple fiber delay lines or chirped fiber gratings, resulting in a further increase of the energy handling ability of the fiber amplifiers. The phase of the pulses in the dispersive delay line is controlled to quartic order by the use of fibers with varying amounts of waveguide dispersion or by controlling the chirp of the fiber gratings. After amplification, the dispersively stretched pulses can be re-compressed to nearly their bandwidth limit by the implementation of another set of dispersive delay lines. To ensure a wide tunability of the whole system, Raman-shifting of the compact sources of ultrashort pulses in conjunction with frequency-conversion in nonlinear optical crystals can be implemented, or an Anti-Stokes fiber in conjunction with fiber amplifiers and Raman-shifters are used. A particularly compact implementation of the whole system uses fiber oscillators in conjunction with fiber amplifiers. Additionally, long, distributed, positive dispersion optical amplifiers are used to improve transmission characteristics of an optical communication system. Finally, an optical communication system utilizes a Raman amplifier fiber pumped by a train of Raman-shifted, wavelength-tunable pump pulses, to thereby amplify an optical signal which counterpropogates within the Raman amplifier fiber with respect to the pump pulses.
    • 13. 发明授权
    • Apparatus and method for the generation of high-power femtosecond pulses
from a fiber amplifier
    • 用于从光纤放大器产生高功率飞秒脉冲的装置和方法
    • US6014249A
    • 2000-01-11
    • US263891
    • 1999-03-08
    • Martin E. FermannAlmantas GalvanauskasDonald J. Harter
    • Martin E. FermannAlmantas GalvanauskasDonald J. Harter
    • G02F1/35G02F1/37H01S3/067H01S3/07H01S3/109H01S3/16H01S3/23H01S3/30H01S3/00H01S3/10
    • H01S3/06754H01S3/302G02F1/37G02F2001/3542G02F2001/3548H01S2301/085H01S3/06712H01S3/06758H01S3/1603H01S3/2333
    • An apparatus generates femtosecond pulses from laser amplifiers by nonlinear frequency conversion. The implementation of nonlinear frequency-conversion allows the design of highly nonlinear amplifiers at a signal wavelength (SW), while still preserving a high-quality pulse at an approximately frequency-doubled wavelength (FDW). Nonlinear frequency-conversion also allows for limited wavelength tuning of the FDW. As an example, the output from a nonlinear fiber amplifier is frequency-converted. By controlling the polarization state in the nonlinear fiber amplifier and by operating in the soliton-supporting dispersion regime of the host glass, an efficient nonlinear pulse compression for the SW is obtained. The generated pulse width is optimized by utilizing soliton compression in the presence of the Raman-self-frequency shift in the nonlinear fiber amplifier at the SW. High-power pulses are obtained by employing fiber amplifiers with large core-diameters. The efficiency of the nonlinear fiber amplifier is optimized by using a double clad fiber (i.e., a fiber with a double-step refractive index profile) and by pumping light directly into the inner core of this fiber. Periodically poled LiNbO.sub.3 (PPLN) is used for efficient conversion of the SW to a FDW. The quality of the pulses at the FDW can further be improved by nonlinear frequency conversion of the compressed and Raman-shifted signal pulses at the SW. The use of Raman-shifting further increases the tuning range at the FDW. For applications in confocal microscopy, a special linear fiber amplifier is used.
    • 一种装置通过非线性频率转换从激光放大器产生飞秒脉冲。 非线性频率转换的实现允许在信号波长(SW)下设计高度非线性的放大器,同时仍保持近似倍频波长(FDW)的高质量脉冲。 非线性频率转换还允许FDW的有限波长调谐。 作为示例,来自非线性光纤放大器的输出被频率转换。 通过控制非线性光纤放大器中的偏振状态,并通过在主体玻璃的孤子支持色散方式中进行操作,可获得SW的有效非线性脉冲压缩。 在SW的非线性光纤放大器中存在拉曼自频移的情况下,利用孤子压缩来优化产生的脉冲宽度。 通过采用具有较大芯径的光纤放大器获得高功率脉冲。 通过使用双包层光纤(即,具有双阶折射率分布的光纤)并且通过将光直接泵送到该光纤的内芯来优化非线性光纤放大器的效率。 周期极化的LiNbO 3(PPLN)用于SW向FDW的有效转换。 通过在SW处的压缩和拉曼移位的信号脉冲的非线性频率转换可以进一步改善FDW处脉冲的质量。 拉曼偏移的使用进一步增加了FDW的调谐范围。 对于在共聚焦显微镜中的应用,使用特殊的线性光纤放大器。
    • 15. 发明授权
    • Use of Chirped Quasi-phase-matched materials in chirped pulse amplification systems
    • 在啁啾脉冲放大系统中使用啁啾准相位匹配材料
    • US06198568B1
    • 2001-03-06
    • US08845409
    • 1997-04-25
    • Almantas GalvanauskasDonald J. Harter
    • Almantas GalvanauskasDonald J. Harter
    • G02F135
    • H01S3/0057G02F1/3775H01S3/06725H01S3/06754H01S3/2308
    • The limitations on maximum pulse energies from a fiber-grating pulse compressor are circumvented by placing a chirped-period quasi-phase-matched (QPM) crystal after the fiber-grating pulse compressor. The crystal accomplishes second-harmonic generation and stretched-pulse compression at the second-harmonic in a single device. This hybrid compressor configuration enables a substantial increase in ultrashort pulse energies obtainable with a compact all-fiber chirped pulse amplification system. Furthermore, with such a QPM crystal the adjustable compensation of both linear and nonlinear frequency chirp in second-harmonic pulses is possible. This property makes a variety of compact, robust and simple ultrashort-pulse fiber amplifier designs possible. It also allows for certain tolerances in the design and manufacturing of a pulse amplification system. Capability to compensate an arbitrary frequency chirp allows nonlinear spectral-broadening techniques for achieving shorter second-harmonic pulse durations. Also, by employing chirped QPM crystals maximum energy throughput and good second-harmonic pulse quality can be achieved.
    • 通过在光纤光栅脉冲压缩器之后放置啁啾期准相位匹配(QPM)晶体来避免来自光纤光栅脉冲压缩器的最大脉冲能量的限制。 晶体在单个器件中实现二次谐波的二次谐波生成和拉伸脉冲压缩。 该混合压缩机配置使得能够显着增加通过紧凑的全光纤啁啾脉冲放大系统可获得的超短脉冲能量。 此外,利用这样的QPM晶体,二次谐波脉冲中线性和非线性频率啁啾的可调补偿是可能的。 该属性使得各种紧凑,坚固且简单的超短脉冲光纤放大器设计成为可能。 它还允许在脉冲放大系统的设计和制造中具有一定的公差。 能够补偿任意频率的线性调频脉冲允许非线性频谱扩展技术实现更短的二次谐波脉冲持续时间。 此外,通过采用啁啾QPM晶体,可以实现最大的能量吞吐量和良好的二次谐波脉冲质量。
    • 16. 发明授权
    • Ultrashort-pulse source with controllable multiple-wavelength output
    • 具有可控多波长输出的超短脉冲源
    • US06549547B2
    • 2003-04-15
    • US09956920
    • 2001-09-21
    • Almantas GalvanauskasKa K. WongDonald J. Harter
    • Almantas GalvanauskasKa K. WongDonald J. Harter
    • G02B635
    • G02F1/3137G01B9/02007G01B9/02014G01B9/02091G02F1/3132G02F1/335G02F1/395G02F2201/124H01S3/0057
    • A multiple-wavelength ultrashort-pulse laser system includes a laser generator producing ultrashort pulses at a fixed wavelength, and at least one and preferably a plurality of wavelength-conversion channels. Preferably, a fiber laser system is used for generating single-wavelength, ultrashort pulses. An optical split switch matrix directs the pulses from the laser generator into at least one of the wavelength conversion channels. An optical combining switch matrix is disposed downstream of the wavelength-conversion channels and combines outputs from separate wavelength-conversion channels into a single output channel. Preferably, waveguides formed in a ferroelectric substrate by titanium indiffusion (TI) and/or proton exchange (PE) form the wavelength-conversion channels and the splitting and combining matrices. Use of the waveguide allows efficient optical parametric generation to occur in the wavelength-conversion channels at pulse energies achievable with a mode-locked laser source. The multiple-wavelength laser system can replace a plurality of different, single-wavelength laser systems. One particular application for the system is a multi-photon microscope, where the ability to select the ultrashort-signal wavelength of the laser source accommodates any single fluorescent dye or several fluorescent dyes simultaneously. In its simplest form, the system can be used to convert the laser wavelength to a more favorable wavelength. For example, pulses generated at 1.55 &mgr;m by a mode-locked erbium fiber laser can be converted to 1.3 &mgr;m for use in optical coherence tomography or to 1.04-1.12 &mgr;m for amplification by a Yterbium amplifier, allowing amplification of pulses which can be used in a display, printing or machining system.
    • 多波长超短脉冲激光系统包括产生固定波长的超短脉冲的激光发生器和至少一个,优选多个波长转换通道。 优选地,光纤激光系统用于产生单波长超短脉冲。 光分路开关矩阵将来自激光发生器的脉冲引导到至少一个波长转换通道。 光学组合开关矩阵设置在波长转换通道的下游,并将来自分离的波长转换通道的输出组合成单个输出通道。 优选地,通过钛扩散(TI)和/或质子交换(PE)在铁电衬底中形成的波导形成波长转换通道和分离和组合矩阵。 波导的使用允许在波长转换通道中以在锁模激光源可实现的脉冲能量下发生有效的光参量产生。 多波长激光系统可以代替多个不同的单波长激光系统。 该系统的一个特殊应用是多光子显微镜,其中选择激光源的超短信号波长的能力同时容纳任何单一荧光染料或几种荧光染料。 在其最简单的形式中,该系统可用于将激光波长转换成更有利的波长。 例如,通过模式锁定铒光纤激光器在1.55mum处产生的脉冲可以转换为1.3μm,用于光学相干断层摄影,或者通过镱放大器转换为1.04-1.12μm,用于放大可用于 显示,打印或加工系统。
    • 17. 发明授权
    • Ultrashort-pulse source with controllable multiple-wavelength output
    • 具有可控多波长输出的超短脉冲源
    • US6154310A
    • 2000-11-28
    • US975679
    • 1997-11-21
    • Almantas GalvanauskasKa K. WongDonald J. Harter
    • Almantas GalvanauskasKa K. WongDonald J. Harter
    • H01S3/098G01B9/02G02F1/313G02F1/335G02F1/39H01S3/06H04B10/02H04B10/28G02F1/37
    • G02F1/3137G01B9/02007G01B9/02014G01B9/02091G02F1/3132G02F1/395G02F1/335G02F2201/124H01S3/0057
    • A multiple-wavelength ultrashort-pulse laser system includes a laser generator producing ultrashort pulses at a fixed wavelength, and at least one and preferably a plurality of wavelength-conversion channels. Preferably, a fiber laser system is used for generating single-wavelength, ultrashort pulses. An optical split switch matrix directs the pulses from the laser generator into at least one of the wavelength conversion channels. An optical combining switch matrix is disposed downstream of the wavelength-conversion channels and combines outputs from separate wavelength-conversion channels into a single output channel. Preferably, waveguides formed in a ferroelectric substrate by titanium indiffusion (TI) and/or proton exchange (PE) form the wavelength-conversion channels and the splitting and combining matrices. Use of the waveguide allows efficient optical parametric generation to occur in the wavelength-conversion channels at pulse energies achievable with a mode-locked laser source. The multiple-wavelength laser system can replace a plurality of different, single-wavelength laser systems. One particular application for the system is a multi-photon microscope, where the ability to select the ultrashort-signal wavelength of the laser source accommodates any single fluorescent dye or several fluorescent dyes simultaneously. In its simplest form, the system can be used to convert the laser wavelength to a more favorable wavelength. For example, pulses generated at 1.55 .mu.m by a mode-locked erbium fiber laser can be converted to 1.3 .mu.m for use in optical coherence tomography or to 1.04-1.12 .mu.m for amplification by a Yterbium amplifier, allowing amplification of pulses which can be used in a display, printing or machining system.
    • 多波长超短脉冲激光系统包括产生固定波长的超短脉冲的激光发生器和至少一个,优选多个波长转换通道。 优选地,光纤激光系统用于产生单波长超短脉冲。 光分路开关矩阵将来自激光发生器的脉冲引导到至少一个波长转换通道。 光学组合开关矩阵设置在波长转换通道的下游,并将来自分离的波长转换通道的输出组合成单个输出通道。 优选地,通过钛扩散(TI)和/或质子交换(PE)在铁电衬底中形成的波导形成波长转换通道和分离和组合矩阵。 波导的使用允许在波长转换通道中以在锁模激光源可实现的脉冲能量下发生有效的光参量产生。 多波长激光系统可以代替多个不同的单波长激光系统。 该系统的一个特殊应用是多光子显微镜,其中选择激光源的超短信号波长的能力同时容纳任何单一荧光染料或几种荧光染料。 在其最简单的形式中,该系统可用于将激光波长转换成更有利的波长。 例如,通过模式锁定铒光纤激光器在1.55μm产生的脉冲可以转换为1.3μm用于光学相干断层扫描,或者通过镱放大器放大到1.04-1.12μm,以允许放大脉冲, 用于显示,打印或加工系统。
    • 19. 发明授权
    • Ultrashort-pulse source with controllable multiple-wavelength output
    • 具有可控多波长输出的超短脉冲源
    • US06334011B1
    • 2001-12-25
    • US09578490
    • 2000-05-26
    • Almantas GalvanauskasKa K. WongDonald J. Harter
    • Almantas GalvanauskasKa K. WongDonald J. Harter
    • G02B635
    • G02F1/3137G01B9/02007G01B9/02014G01B9/02091G02F1/3132G02F1/335G02F1/395G02F2201/124H01S3/0057
    • A multiple-wavelength ultrashort-pulse laser system includes a laser generator producing ultrashort pulses at a fixed wavelength, and at least one and preferably a plurality of wavelength-conversion channels. Preferably, a fiber laser system is used for generating single-wavelength, ultrashort pulses. An optical split switch matrix directs the pulses from the laser generator into at least one of the wavelength conversion channels. An optical combining switch matrix is disposed downstream of the wavelength-conversion channels and combines outputs from separate wavelength-conversion channels into a single output channel. Preferably, waveguides formed in a ferroelectric substrate by titanium indiffusion (TI) and/or proton exchange (PE) form the wavelength-conversion channels and the splitting and combining matrices. Use of the waveguide allows efficient optical parametric generation to occur in the wavelength-conversion channels at pulse energies achievable with a mode-locked laser source. The multiple-wavelength laser system can replace a plurality of different, single-wavelength laser systems. One particular application for the system is a multi-photon microscope, where the ability to select the ultrashort-signal wavelength of the laser source accommodates any single fluorescent dye or several fluorescent dyes simultaneously. In its simplest form, the system can be used to convert the laser wavelength to a more favorable wavelength. For example, pulses generated at 1.55 &mgr;m by a mode-locked erbium fiber laser can be converted to 1.3 &mgr;m for use in optical coherence tomography or to 1.04-1.12 &mgr;m for amplification by a Yterbium amplifier, allowing amplification of pulses which can be used in a display, printing or machining system.
    • 多波长超短脉冲激光系统包括产生固定波长的超短脉冲的激光发生器和至少一个,优选多个波长转换通道。 优选地,光纤激光系统用于产生单波长超短脉冲。 光分路开关矩阵将来自激光发生器的脉冲引导到至少一个波长转换通道。 光学组合开关矩阵设置在波长转换通道的下游,并将来自分离的波长转换通道的输出组合成单个输出通道。 优选地,通过钛扩散(TI)和/或质子交换(PE)在铁电衬底中形成的波导形成波长转换通道和分离和组合矩阵。 波导的使用允许在波长转换通道中以在锁模激光源可实现的脉冲能量下发生有效的光参量产生。 多波长激光系统可以替代多个不同的单波长激光系统。 该系统的一个特殊应用是多光子显微镜,其中选择激光源的超短信号波长的能力同时容纳任何单一荧光染料或几种荧光染料。 在其最简单的形式中,该系统可用于将激光波长转换成更有利的波长。 例如,通过模式锁定铒光纤激光器在1.55mum处产生的脉冲可以转换为1.3μm,用于光学相干断层摄影,或者通过镱放大器转换为1.04-1.12μm,用于放大可用于 显示,打印或加工系统。