会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 13. 发明授权
    • Manufacture method for ZnO based semiconductor crystal and light emitting device using same
    • 基于ZnO的半导体晶体的制造方法和使用它的发光器件
    • US07968363B2
    • 2011-06-28
    • US12749401
    • 2010-03-29
    • Hiroshi KotaniMichihiro SanoHiroyuki KatoAkio Ogawa
    • Hiroshi KotaniMichihiro SanoHiroyuki KatoAkio Ogawa
    • H01L21/20
    • H01L21/02576H01L21/0237H01L21/02403H01L21/02433H01L21/02472H01L21/02554H01L21/02565H01L21/02579H01L21/02631H01L33/0083
    • A manufacture method for zinc oxide (ZnO) based semiconductor crystal includes providing a substrate having a Zn polarity plane; and reacting at least zinc (Zn) and oxygen (O) on the Zn polarity plane of said substrate to grow ZnO based semiconductor crystal on the Zn polarity plane of said substrate in a Zn rich condition. (a) An n-type ZnO buffer layer is formed on a Zn polarity plane of a substrate. (b) An n-type ZnO layer is formed on the surface of the n-type ZnO buffer layer. (c) An n-type ZnMgO layer is formed on the surface of the n-type ZnO layer. (d) A ZnO/ZnMgO quantum well layer is formed on the surface of the n-type ZnMgO layer, by alternately laminating a ZnO layer and a ZnMgO layer. @(e) A p-type ZnMgO layer is formed on the surface of the ZnO/ZnMgO quantum well layer. (f) A p-type ZnO layer is formed on the surface of the p-type ZnMgO layer. @(g) An electrode is formed on the n-type ZnO layer and p-type ZnO layer. The n-type ZnO layer is formed under a Zn rich condition at the step (b).
    • 一种氧化锌(ZnO)系半导体晶体的制造方法,其特征在于,提供具有Zn极性面的基板, 并且在所述衬底的Zn极性平面上使至少锌(Zn)和氧(O)反应,以在富锌条件下在所述衬底的Zn极性平面上生长ZnO基半导体晶体。 (a)在基板的Zn极性平面上形成n型ZnO缓冲层。 (b)在n型ZnO缓冲层的表面上形成n型ZnO层。 (c)在n型ZnO层的表面上形成n型ZnMgO层。 (d)通过交替层叠ZnO层和ZnMgO层,在n型ZnMgO层的表面上形成ZnO / ZnMgO量子阱层。 (e)在ZnO / ZnMgO量子阱层的表面上形成p型ZnMgO层。 (f)在p型ZnMgO层的表面上形成p型ZnO层。 (g)在n型ZnO层和p型ZnO层上形成电极。 在步骤(b),在富锌条件下形成n型ZnO层。
    • 19. 发明授权
    • Semiconductor light emitting device
    • 半导体发光器件
    • US08546827B2
    • 2013-10-01
    • US12960281
    • 2010-12-03
    • Takahiko NozakiHiroshi Kotani
    • Takahiko NozakiHiroshi Kotani
    • H01L21/00
    • H01L33/644H01L33/50H01L33/60H01L33/641H01L33/642H01L2924/0002H01L2933/0075H01L2924/00
    • A light emitting device that can radiate heat generated by a semiconductor light emitting element and/or a resin layer at not only a position directly under the light emitting element, but also a position remote from such a position with respect to the main plane direction is provided. In the light emitting device, a light emitting element is carried on a substrate, and a resin covers the light emitting element. An anisotropic heat conduction material showing a heat conductivity for the substrate main plane direction larger than that for the substrate thickness direction is carried on the substrate. A side of the anisotropic heat conduction material contacts with the resin. Thereby, the anisotropic heat conduction material can receive heat of the resin, conduct it along the main plane direction, and radiate it to the substrate at a position remote from the light emitting element and/or the resin. As the anisotropic heat conduction material, for example, one or more laminated layers of graphite in the form of sheet are used.
    • 可以在不仅在发光元件正下方的位置而且能够相对于主平面方向远离这种位置的位置辐射由半导体发光元件和/或树脂层产生的热的发光器件, 提供。 在发光装置中,发光元件承载在基板上,树脂覆盖发光元件。 在基板上承载表现出比基板厚度方向大的基板主面方向的导热性的各向异性导热材料。 各向异性热传导材料的一面与树脂接触。 由此,各向异性热传导材料可以接收树脂的热量,沿着主平面方向导电,并在远离发光元件和/或树脂的位置将其辐射到基板。 作为各向异性热传导材料,例如可以使用片状的一层以上的石墨层叠体。