会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 11. 发明授权
    • Optical pulse time spreader and optical code division multiplexing transmission device
    • 光脉冲时分散射器和光码分复用传输装置
    • US07945171B2
    • 2011-05-17
    • US11587492
    • 2005-12-21
    • Kensuke SasakiAkihiko Nishiki
    • Kensuke SasakiAkihiko Nishiki
    • G02B6/34G02B6/26H04J14/08H04J14/00
    • H04J14/005
    • A phase control arrangement has a structure in which a Superstructured fiber Bragg Grating (SSFBG) 40 has fifteen unit Fiber Bragg Gratings (FBGs) arranged in series in a waveguide direction. The SSFBG 40 is fixed to the core of an optical fiber 36 that includes a core 34 and cladding 32. The difference Δn between the maximum and minimum of the effective refractive index of the optical fiber is 6.2×10−5. The phase difference of Bragg reflected light from two unit diffraction gratings that adjoin one another from front to back and provide equal code values is given by 2πM+(π/2), where M is an integer. Further, the phase difference of the Bragg reflected light from two unit diffraction gratings that adjoin one another from front to back and provide different code values is given by 2πM+(2N+1)π+(π/2) where M and N are integers. The ratio P/W between the peak value P and the subpeak value W of the autocorrelation waveform, and the ratio P/C between the peak value P of the autocorrelation waveform and the maximum peak value C of the cross correlation waveform are both large.
    • 相位控制装置具有其中超结构化光纤布拉格光栅(SSFBG)40具有在波导方向上串联布置的十五个单位光纤布拉格光栅(FBG)的结构。 SSFBG 40固定在包括芯34和包层32的光纤36的芯部上。光纤的有效折射率的最大值与最小值之间的差Dgr n为6.2×10 -5。 两个单位衍射光栅的前后相邻并提供相等代码值的布拉格反射光的相位差由2&pgr; M +(&pgr; / 2)给出,其中M是整数。 此外,来自两个单元衍射光栅的布拉格反射光的相位差由前后相邻并提供不同的代码值由2&pgr; M +(2N + 1)&pgr; +(&pgr; / 2)给出,其中M 和N是整数。 自相关波形的峰值P和副峰值W之间的比P / W以及自相关波形的峰值P与互相关波形的最大峰值C之间的比P / C都较大。
    • 12. 发明授权
    • Optical pulse time spreading device
    • 光脉冲时间扩展装置
    • US07310465B2
    • 2007-12-18
    • US11520661
    • 2006-09-14
    • Akihiko NishikiKensuke SasakiShuko Kobayashi
    • Akihiko NishikiKensuke SasakiShuko Kobayashi
    • G02B6/34
    • G02B6/2932G02B6/02085H04J14/005
    • The present invention is an SSFBG with which there are few restrictions on the code that can be set and the overall length of which is short. This SSFBG has four unit FBGs the Bragg reflection wavelengths of which are λ1, λ2, λ3, and λ4 disposed with a part where the unit FBGs overlap one another in the waveguide direction of the optical fiber. The left end of the horizontal axis corresponds to the position of the I/O terminal of the SSFBG and the right end of the horizontal axis corresponds to the terminal on the opposite side from the I/O terminal of the SSFBG. The Bragg reflection wavelengths λ1, λ2, λ3, and λ4 of the four unit FBGs are λ1=1543.28 nm, λ2=1543.60 nm, λ3=1543.92 nm, and λ4=1544.24 nm respectively. Codes (λ1, λ2, λ3, and λ4) used in the time-spreading/wavelength hopping system are established for the SSFBG by disposing the four unit FBGs at equal intervals such that the interval therebetween is 12.8 mm.
    • 本发明是一种SSFBG,其对于可以设置的代码的限制很少,并且其总长度短。 该SSFBG具有四个单位FBG,其布拉格反射波长是λ1,λ2,λ3和λ4, / SUB>,其中单元FBG在光纤的波导方向上彼此重叠的部分。 水平轴的左端对应于SSFBG的I / O端子的位置,水平轴的右端对应于与SSFBG的I / O端子相反的端子。 四个单位FBG的布拉格反射波长λ1,λ2,λ3 3和λ4 4是 λ1 = 1543.28nm,λ2 = 1543.60nm,λ3 = 1543.92nm,λ4 = 1544.24 nm。 用于时间扩展/解码的码(λ1,λ2,λ3,λ3和λ4) 通过以相等的间隔布置四个单元FBG,使得它们之间的间隔为12.8mm,为SSFBG建立了波长跳变系统。
    • 13. 发明授权
    • Optical encoding method and encoder for optical code division multiplexing
    • 用于光码分复用的光编码方法和编码器
    • US07224902B2
    • 2007-05-29
    • US10253599
    • 2002-09-25
    • Akihiko Nishiki
    • Akihiko Nishiki
    • H04J14/02H04J14/08
    • H04J14/005
    • A time-spreading and wavelength-hopping optical encoder spreads each pulse in a modulated optical pulse signal into a predetermined pulse train including pulses with different wavelengths. The last pulse in the pulse train is delayed from the first pulse in the pulse train by an interval that is longer than the pulse period of the modulated optical pulse signal. Interference is avoided by dividing the pulse train into successive delay groups that are equal in length to the pulse period of the modulated data pulse signal, and having each wavelength appear in only one delay group. If encoders producing differently structured pulse trains are used in an optical multiplexer, interference is avoided by having the same wavelength appear only at different positions within the delay groups of different pulse trains. Long delays can be used to multiplex a relatively large number of channels, even at high transmission rates.
    • 时间扩展和波长跳跃光学编码器将调制的光脉冲信号中的每个脉冲扩展成包括具有不同波长的脉冲的预定脉冲串。 脉冲串中的最后一个脉冲从脉冲序列中的第一个脉冲延迟一个比调制的光脉冲信号的脉冲周期长的间隔。 通过将脉冲串划分成与调制数据脉冲信号的脉冲周期长度相等的连续延迟组,并且每个波长仅出现在一个延迟组中来避免干扰。 如果在光复用器中使用产生不同结构的脉冲串的编码器,则通过使相同的波长仅出现在不同脉冲串的延迟组内的不同位置处来避免干扰。 即使在高传输速率下,长延迟也可用于复用相对较多的信道。
    • 14. 发明授权
    • Method and apparatus for fabricating fiber Bragg gratings
    • 制造光纤布拉格光栅的方法和装置
    • US07171078B2
    • 2007-01-30
    • US10885659
    • 2004-07-08
    • Kensuke SasakiAkihiko Nishiki
    • Kensuke SasakiAkihiko Nishiki
    • G02B6/34
    • G02B6/02152G02B6/02138
    • A method for fabricating fiber Bragg gratings including: scanning a photosensitive optical fiber with ultraviolet laser light in a longitudinal direction of the optical fiber by means of a phase mask method, thereby forming periodic refractive index modulation structure in a core of the optical fiber in the longitudinal direction; and instantaneously moving a phase mask used in the phase mask method by a predetermined distance in the longitudinal direction, thereby forming a phase shift portion in the periodic refractive index modulation structure formed in the core of the optical fiber, when a radiation position of the ultraviolet laser light reaches a predetermined position, in the middle of the scanning step using the ultraviolet laser light.
    • 一种制造光纤布拉格光栅的方法,包括:利用相位掩模法在光纤的纵向上用紫外线激光扫描感光光纤,从而在光纤的芯中形成周期性的折射率调制结构 纵向; 并将相位掩模法中使用的相位掩模瞬时移动长度方向预定的距离,从而在形成在光纤的芯中的周期性折射率调制结构中形成相移部分,当紫外线 激光在使用紫外线激光的扫描步骤的中间到达预定位置。
    • 16. 发明授权
    • Optical code division multiplexing transmission and reception method and optical code division multiplexing transceiver
    • 光码分复用收发方法和光码分复用收发器
    • US07680415B2
    • 2010-03-16
    • US12355312
    • 2009-01-16
    • Naoki MinatoAkihiko NishikiHideyuki IwamuraTakashi Ushikubo
    • Naoki MinatoAkihiko NishikiHideyuki IwamuraTakashi Ushikubo
    • H04J4/00H04J14/08
    • H04J14/005H04J14/02
    • An object of the present invention is to provide an OCDM transceiver with which the reduction amount of the intensity of the correlation waveform signal is smaller than that of a conventional device of the same type in the decoding step that comprises a time gate processing step. Hence, in the OCDM transceiver of the present invention that comprises an encoding portion and a decoding portion, the decoding portion is constituted comprising a decoder, clock extractor, and time gate. The decoder decodes an encoded optical pulse signal and separates the encoded optical pulse signal into a clock signal extraction signal and an optical pulse signal playback signal. The clock extractor extracts a clock signal from the clock signal extraction signal. Further, the time gate removes only the auto-correlation waveform component from the optical pulse signal playback signal. The auto-correlation waveform component is converted to an electrical signal by means of an optical receiver and generated as a reception signal.
    • 本发明的目的是提供一种OCDM收发器,在包括时间门处理步骤的解码步骤中,相关波形信号的强度的减少量比相同类型的常规装置的减少量小。 因此,在包括编码部分和解码部分的本发明的OCDM收发器中,解码部分包括解码器,时钟提取器和时间门。 解码器解码编码的光脉冲信号,并将编码的光脉冲信号分离成时钟信号提取信号和光脉冲信号重放信号。 时钟提取器从时钟信号提取信号中提取时钟信号。 此外,时间栅极仅从光脉冲信号重放信号中去除自相关波形分量。 自相关波形分量通过光接收机转换为电信号,并作为接收信号产生。
    • 17. 发明申请
    • OPTICAL CODE DIVISION MULTIPLEXING TRANSMISSION AND RECEPTION METHOD AND OPTICAL CODE DIVISION MULTIPLEXING TRANSCEIVER
    • 光学代码段多路复用传输和接收方法和光学代码段多路复用收发器
    • US20090190927A1
    • 2009-07-30
    • US12355312
    • 2009-01-16
    • NAOKI MINATOAkihiko Nishiki
    • NAOKI MINATOAkihiko Nishiki
    • H04J14/00
    • H04J14/005H04J14/02
    • An object of the present invention is to provide an OCDM transceiver with which the reduction amount of the intensity of the correlation waveform signal is smaller than that of a conventional device of the same type in the decoding step that comprises a time gate processing step. Hence, in the OCDM transceiver of the present invention that comprises an encoding portion and a decoding portion, the decoding portion is constituted comprising a decoder, clock extractor, and time gate. The decoder decodes an encoded optical pulse signal and separates the encoded optical pulse signal into a clock signal extraction signal and an optical pulse signal playback signal. The clock extractor extracts a clock signal from the clock signal extraction signal. Further, the time gate removes only the auto-correlation waveform component from the optical pulse signal playback signal. The auto-correlation waveform component is converted to an electrical signal by means of an optical receiver and generated as a reception signal.
    • 本发明的目的是提供一种OCDM收发器,在包括时间门处理步骤的解码步骤中,相关波形信号的强度的减少量比相同类型的常规装置的减少量小。 因此,在包括编码部分和解码部分的本发明的OCDM收发器中,解码部分包括解码器,时钟提取器和时间门。 解码器解码编码的光脉冲信号,并将编码的光脉冲信号分离成时钟信号提取信号和光脉冲信号重放信号。 时钟提取器从时钟信号提取信号中提取时钟信号。 此外,时间栅极仅从光脉冲信号重放信号中去除自相关波形分量。 自相关波形分量通过光接收机转换为电信号,并作为接收信号产生。
    • 18. 发明授权
    • Fiber bragg grating device
    • 光纤布拉格光栅装置
    • US07127140B2
    • 2006-10-24
    • US11287227
    • 2005-11-28
    • Shuko KobayashiAkihiko Nishiki
    • Shuko KobayashiAkihiko Nishiki
    • G02B6/34H04J14/02
    • G02B6/0218G02B6/022G02B6/02204G02F1/011G02F1/0147G02F2201/307
    • There is provided a fiber Bragg grating devise comprising an FBG mount that is constituted by sequentially stacking a temperature control plate, a base plate, and a mounting plate, and an SSFBG in which a plurality of FBG units of the same constitution and a plurality of phase modulation portions are alternately formed in the same optical fiber. The temperature control plate is constituted by a thermo module and a heat-insulating member. The base plate is fixed in contact with the upper face of the temperature control plate and the mounting plate is in contact with the upper face of the base plate in a state where the mounting plate is able to glide over the upper face of the base plate. The SSFBG is fixed to contact an FBG contact portion that is established on the upper face of the mounting plate. The phase modulation portions are formed to be capable of expanding and contracting and, as a result of the expansion and contraction of the phase modulation portions, the phase of the carrier wave of the optical pulse signal that is propagated by the phase modulation portions can be changed.
    • 提供了一种光纤布拉格光栅装置,其包括通过顺序堆叠温度控制板,基板和安装板而构成的FBG安装座,以及SSFBG,其中具有相同结构的多个FBG单元和多个 相位调制部分交替地形成在相同的光纤中。 温度控制板由热模块和绝热构件构成。 基板与温度控制板的上表面固定接触,并且安装板在安装板能够滑动到底板的上表面的状态下与基板的上表面接触 。 SSFBG被固定以接触建立在安装板的上表面上的FBG接触部分。 相位调制部分形成为能够扩展和缩小,并且由于相位调制部分的扩展和缩小,由相位调制部分传播的光脉冲信号的载波相位可以是 改变了
    • 19. 发明申请
    • Optical code division multiplexing transmission and reception method and optical code division multiplexing transceiver
    • 光码分复用收发方法和光码分复用收发器
    • US20060115272A1
    • 2006-06-01
    • US11284971
    • 2005-11-23
    • Naoki MinatoAkihiko NishikiHideyuki IwamuraTakashi Ushikubo
    • Naoki MinatoAkihiko NishikiHideyuki IwamuraTakashi Ushikubo
    • H04J14/00
    • H04J14/005H04J14/02
    • An object of the present invention is to provide an OCDM transceiver with which the reduction amount of the intensity of the correlation waveform signal is smaller than that of a conventional device of the same type in the decoding step that comprises a time gate processing step. Hence, in the OCDM transceiver of the present invention that comprises an encoding portion and a decoding portion, the decoding portion is constituted comprising a decoder, clock extractor, and time gate. The decoder decodes an encoded optical pulse signal and separates the encoded optical pulse signal into a clock signal extraction signal and an optical pulse signal playback signal. The clock extractor extracts a clock signal from the clock signal extraction signal. Further, the time gate removes only the auto-correlation waveform component from the optical pulse signal playback signal. The auto-correlation waveform component is converted to an electrical signal by means of an optical receiver and generated as a reception signal.
    • 本发明的目的是提供一种OCDM收发器,在包括时间门处理步骤的解码步骤中,相关波形信号的强度的减少量比相同类型的常规装置的减少量小。 因此,在包括编码部分和解码部分的本发明的OCDM收发器中,解码部分包括解码器,时钟提取器和时间门。 解码器解码编码的光脉冲信号,并将编码的光脉冲信号分离成时钟信号提取信号和光脉冲信号重放信号。 时钟提取器从时钟信号提取信号中提取时钟信号。 此外,时间栅极仅从光脉冲信号重放信号中去除自相关波形分量。 自相关波形分量通过光接收机转换为电信号,并作为接收信号产生。
    • 20. 发明申请
    • Optical code division multiplexing communication method and system
    • 光码分复用通信方法及系统
    • US20060039701A1
    • 2006-02-23
    • US11185935
    • 2005-07-21
    • Akihiko NishikiKensuke SasakiShuko KobayashiSatoko Kutsuzawa
    • Akihiko NishikiKensuke SasakiShuko KobayashiSatoko Kutsuzawa
    • H04J14/00H04J4/00
    • H04J14/005
    • An optical code division multiplexing communication method includes the steps of: producing a multi-wavelength optical pulse train from wavelength multiplexing pulse; transmitting the multi-wavelength optical pulse train through a transmission line using a time-spreading/wavelength-hopping method; decoding wavelength multiplexing pulse from the multi-wavelength optical pulse train transmitted through the transmission line; compensating delay time differences between individual optical pulses of the multi-wavelength optical pulse train, the delay time differences occurring in the step of transmitting the multi-wavelength optical pulse train through the transmission line; and compensating optical pulse spread in a time direction, which occurs in each of the optical pulses of the multi-wavelength optical pulse train in the step of transmitting the multi-wavelength optical pulse train through the transmission line.
    • 光码分复用通信方法包括以下步骤:从波长复用脉冲产生多波长光脉冲串; 使用时间扩展/波长跳跃方法通过传输线传输多波长光脉冲串; 解码通过传输线传输的多波长光脉冲串的波长复用脉冲; 补偿多波长光脉冲序列的各个光脉冲之间的延迟时间差,在通过传输线传输多波长光脉冲串的步骤中发生的延迟时间差; 以及在通过传输线传输多波长光脉冲串的步骤中补偿在多波长光脉冲串的每个光脉冲中发生的时间方向上的光脉冲扩展。