会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 12. 发明申请
    • Automatic Baselining Of Metrics For Application Performance Management
    • 针对应用程序性能管理的指标自动基准
    • US20110098973A1
    • 2011-04-28
    • US12605087
    • 2009-10-23
    • David Isaiah Seidman
    • David Isaiah Seidman
    • G06F17/18G06F15/00
    • G06F11/3409G06F11/0709G06F11/0754G06F11/3466G06F2201/80G06F2201/81G06F2201/865G06F2201/87G06F2201/875
    • An application monitoring system monitors one or more applications to generate and report application performance data for transactions. Actual performance data for one or more metrics is compared with a baseline metric value(s) to detect anomalous transactions or components thereof. Automatic baselining for a selected metric is provided using variability based on a distribution range and arithmetic mean of actual performance data to determine an appropriate sensitivity for boundaries between comparison levels. A user-defined sensitivity parameter allows adjustment of baselines to increase or decrease comparison sensitivity for a selected metric. The system identifies anomalies in transactions, components of transaction based on a comparison of actual performance data with the automatically determined baseline for a corresponding metric. The system reports performance data and other transactional data for identified anomalies.
    • 应用程序监视系统监视一个或多个应用程序以生成和报告交易的应用程序性能数据。 将一个或多个度量的实际性能数据与基线度量值进行比较以检测异常事务或其组件。 使用基于分布范围和实际性能数据的算术平均值的可变性来提供所选度量的自动基线,以确定对比水平之间的边界的适当灵敏度。 用户定义的灵敏度参数允许调整基线以增加或减少所选度量的比较灵敏度。 系统根据实际绩效数据与相应度量的自动确定基线的比较来识别交易中的异常,交易组件。 系统报告所识别异常的性能数据和其他事务数据。
    • 13. 发明授权
    • Predicting out of memory conditions using soft references
    • 使用软参考预测内存不足的情况
    • US07761487B2
    • 2010-07-20
    • US11610085
    • 2006-12-13
    • Jyoti Kumar BansalDavid Isaiah SeidmanMark J. Addleman
    • Jyoti Kumar BansalDavid Isaiah SeidmanMark J. Addleman
    • G06F12/00G06F17/30
    • G06F12/0253
    • A near out-of-memory condition in a memory space is detected by creating softly reachable objects which are garbage collected when the memory space is becoming full. The softly reachable objects are objects that can be cleared at the discretion of the garbage collector when heap memory is running low. An agent process of an application can create soft reference objects which reference the softly reachable objects, and periodically poll the soft reference objects to determine if the softly reachable objects have been cleared. If they have been cleared, the agent reports to the application so that a graceful shutdown of the application can be initiated. A report can also be sent to a user interface or other output device. Additional information regarding the memory space can be gained by using softly reachable objects of different sizes and/or ages. Further, a wait period for the polling can be set adaptively.
    • 通过创建在存储器空间变满时被垃圾回收的软可达对象来检测存储器空间中的近内存条件。 可轻松访问的对象是当堆内存不足时可以由垃圾收集器自行清除的对象。 应用程序的代理进程可以创建引用软可达对象的软参考对象,并周期性地轮询软参考对象以确定软可达对象是否已被清除。 如果它们被清除,代理将向应用程序报告,以便可以启动应用程序的正常关闭。 还可以将报告发送到用户界面或其他输出设备。 可以通过使用不同尺寸和/或年龄的轻柔可达的物体获得关于存储器空间的附加信息。 此外,轮询的等待时间可以自适应地设定。
    • 15. 发明申请
    • CAPACITY PLANNING BASED ON RESOURCE UTILIZATION AS A FUNCTION OF WORKLOAD
    • 基于资源利用的能力规划作为工作的功能
    • US20090235268A1
    • 2009-09-17
    • US12049840
    • 2008-03-17
    • David Isaiah SeidmanMark Jacob Addleman
    • David Isaiah SeidmanMark Jacob Addleman
    • G06F9/50
    • G06F11/3452G06F11/3442G06F11/3466G06F11/3476G06F2201/865
    • Capacity planning based on resource utilization as a function of workload is disclosed. The workload may include different types of requests such as login requests, requests to visit web pages, requests to purchase an item on an online shopping site, etc. In one embodiment, data is determined for each of a plurality of workloads. The data includes characteristics of a workload and resource utilization due at least in part processing that workload. Based on the data, utilization of each of the resources as a function of workload characteristics is estimated. Further, based on the estimated resource utilization, workload characteristics that are expected to cause each respective resource to reach a certain level are predicted. That level could be 100 percent utilization, but could be another level. Capacity planning is performed based on the workload characteristics that are expected to cause each respective resource to reach a certain level.
    • 披露了基于资源利用作为工作负载的功能的容量规划。 工作负载可以包括不同类型的请求,例如登录请求,访问网页的请求,在网络购物站点上购买项目的请求等。在一个实施例中,为多个工作负载中的每一个确定数据。 数据包括工作负载和资源利用率的特征,至少部分地处理该工作负载。 根据数据,估计作为工作负载特性的函数的每个资源的利用。 此外,基于估计的资源利用率,预测预期使各个资源达到一定水平的工作量特性。 该水平可能是100%的利用率,但可能是另一个水平。 基于预期导致每个相应资源达到一定水平的工作负载特征来执行容量规划。
    • 19. 发明授权
    • Automatic root cause analysis of performance problems using auto-baselining on aggregated performance metrics
    • 使用自动基准线对聚合性能指标进行自动根本原因分析性能问题
    • US07818418B2
    • 2010-10-19
    • US11688475
    • 2007-03-20
    • Jyoti Kumar BansalDavid Isaiah Seidman
    • Jyoti Kumar BansalDavid Isaiah Seidman
    • G06F15/173
    • H04L43/16H04L43/06H04L43/0852
    • Anomalous behavior in a distributed system is automatically detected. Metrics are gathered for transactions, subsystems and/or components of the subsystems. The metrics can identify response times, error counts and/or CPU loads, for instance. Baseline metrics and associated deviation ranges are automatically determined and can be periodically updated. Metrics from specific transactions are compared to the baseline metrics to determine if an anomaly has occurred. A drill down approach can be used so that metrics for a subsystem are not examined unless the metrics for an associated transaction indicate an anomaly. Further, metrics for a component, application which includes one or more components, or process which includes one or more applications, are not examined unless the metrics for an associated subsystem indicate an anomaly. Multiple subsystems can report the metrics to a central manager, which can correlate the metrics to transactions using transaction identifiers or other transaction context data.
    • 自动检测分布式系统中的异常行为。 为子系统的事务,子系统和/或组件收集度量标准。 例如,度量可以标识响应时间,错误计数和/或CPU负载。 基线指标和相关偏差范围自动确定,并可定期更新。 将特定事务的度量与基准度量进行比较,以确定是否发生异常。 可以使用向下钻取方法,以便不对子系统的度量进行检查,除非相关事务的度量标准表示异常。 此外,除非相关联的子系统的度量指示异常,否则不检查包括一个或多个组件的组件,应用程序的度量或包括一个或多个应用程序的过程。 多个子系统可以将度量报告给中央管理器,其可以使用事务标识符或其他事务上下文数据将度量与事务相关联。