会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 123. 发明申请
    • Nitride Semiconductor Light-Emitting Device
    • 氮化物半导体发光器件
    • US20080035910A1
    • 2008-02-14
    • US11874908
    • 2007-10-19
    • Takashi KyonoKatsushi AkitaYusuke Yoshizumi
    • Takashi KyonoKatsushi AkitaYusuke Yoshizumi
    • H01L31/00
    • H01L33/32B82Y20/00H01L33/06
    • In a nitride semiconductor light-emitting device (11), an emission region (17) has a quantum well structure (19), and lies between an n-type gallium nitride semiconductor region (13) and a p-type gallium nitride semiconductor region (15). The quantum well structure (19) includes a plurality of first well layers (21) composed of InxGa1-xN, one or a plurality of second well layers (23) composed of InyGa1-yN, and barrier layers (25). The first and second well layers (21) and (23) are arranged in alternation with the barrier layers (25). The second well layers (23) lie between the first well layers (21) and the p-type gallium nitride semiconductor region (15). The indium component y of the second well layers (23) is smaller than indium component x of the first well layers (21), and the thickness DW2 of the second well layers (23) is greater than the thickness DW1 of the first well layers (21).
    • 在氮化物半导体发光装置(11)中,发光区域(17)具有量子阱结构(19),位于n型氮化镓半导体区域(13)和p型氮化镓半导体区域 (15)。 量子阱结构(19)包括由多个第一阱层(21)组成的多个第一阱层(21),一个或多个第二阱层( 23),以及阻挡层(25)构成。 第一和第二阱层(21)和(23)被布置成与阻挡层(25)交替。 第二阱层(23)位于第一阱层(21)和p型氮化镓半导体区域(15)之间。 第二阱层(23)的铟成分y小于第一阱层(21)的铟成分x,第二阱层(23)的厚度D W2 W2大于 第一阱层(21)的厚度D
    • 125. 发明授权
    • Method for measuring withstand voltage of semiconductor epitaxial wafer and semiconductor epitaxial wafer
    • 用于测量半导体外延晶片和半导体外延晶片的耐受电压的方法
    • US07195937B2
    • 2007-03-27
    • US10484001
    • 2003-01-23
    • Katsushi AkitaMasashi YamashitaMakoto Kiyama
    • Katsushi AkitaMasashi YamashitaMakoto Kiyama
    • H01L21/66G01R31/26G01N27/02
    • H01L22/14H01L22/34
    • A measurement-facilitating method of measuring the breakdown voltage of a semiconductor epitaxial wafer, and a semiconductor epitaxial wafer whose breakdown voltage is superior are realized. In a method of measuring the breakdown voltage of a semiconductor epitaxial wafer having to do with the present invention, the breakdown voltage between contacts 14 and 18 is measured only through the Schottky contacts, without need for ohmic contacts. Inasmuch as the manufacturing process of forming ohmic contacts is accordingly omitted, the semiconductor epitaxial wafer 10 may be readily used in a breakdown-voltage measurement test. The measurement of the wafer-10 breakdown voltage thus may be readily carried out. Likewise, because the inter-contact breakdown voltage V2 of a wafer 10 can be measured prior to manufacturing a working device from it, unsuitable wafers 10 can be excluded before they are cycled through the working-device fabrication process. Reduction in losses can accordingly be counted upon, in contrast to conventional measuring methods, by which inter-contact breakdown voltage V2 is measured following fabrication of the working devices.
    • 实现了测量半导体外延晶片的击穿电压的测量方法和击穿电压优良的半导体外延晶片。 在测量与本发明有关的半导体外延晶片的击穿电压的方法中,触点14和18之间的击穿电压仅通过肖特基触点测量,而不需要欧姆接触。 因此省略了形成欧姆接触的制造工艺,因此半导体外延晶片10可以容易地用于击穿电压测量测试。 因此,可以容易地进行晶片-10击穿电压的测量。 同样,由于可以在从其制造工作装置之前测量晶片10的接触间击穿电压V 2 2,所以不适合的晶片10可以在它们循环通过工作装置制造之前被排除 处理。 因此,与传统的测量方法相比,可以减少损耗,通过这些测量方法,在工作装置制造之后测量接触间击穿电压V 2 2。
    • 127. 发明申请
    • Semiconductor light generating device
    • 半导体发光装置
    • US20050151154A1
    • 2005-07-14
    • US11032230
    • 2005-01-11
    • Katsushi AkitaTakao NakamuraHideki Hirayama
    • Katsushi AkitaTakao NakamuraHideki Hirayama
    • H01L33/32H01L29/24
    • H01L33/32H01L33/02H01L33/025H01L33/06
    • The semiconductor light generating device comprises a light generating region 3, a first AlX1Ga1-X1N semiconductor (0≦X1≦1) layer 5 and a second AlX2Ga1-X2N semiconductor (0≦X2≦1) layer 7. In this semiconductor light generating device, the light generating region 3 is made of III-nitride semiconductor, and includes a InAlGaN semiconductor layer. The first AlX1Ga1-X1N semiconductor (0≦X1≦1) layer 5 is doped with a p-type dopant, such as magnesium, and is provided on the light generating region 3. The second AlX2Ga1-X2N semiconductor layer 7 has a p-type concentration smaller than the first AlX1Ga1-X1N semiconductor layer 5. The second AlX2Ga1-X2N semiconductor (0≦X2≦1) layer 7 is provided between the light generating region 3 and the first AlX1Ga1-X1N semiconductor layer 5.
    • 半导体光产生装置包括发光区域3,第一Al 1 N 1 Ga 1-X1 N半导体(0 <= X1 <= 1)层5和第二层 Al x X2 Ga 1-X2 N半导体(0 <= X2 <= 1)层7.在该半导体光产生装置中,光产生区3由III 氮化物半导体,并且包括InAlGaN半导体层。 第一Al X1 N 1 Ga 1-X1 N半导体(0 <= X1 <= 1)层5掺杂有诸如镁的p型掺杂剂,并且是 设置在光生成区域3上。第二Al X2 X2 Ga 1-X2 N半导体层7的p型浓度比第一Al X1 < 第一Al 2 N 2 Ga 1-X 2 N半导体(0 <= X2 <= 1 / 1)层7设置在发光区域3和第一Al 1 N 1 Ga 1-X1 N半导体层5之间。