会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 101. 发明授权
    • Low resistance contact between integrated circuit metal levels and
method for same
    • 集成电路金属级之间的低电阻接触和相同的方法
    • US5904565A
    • 1999-05-18
    • US896114
    • 1997-07-17
    • Tue NguyenSheng Teng Hsu
    • Tue NguyenSheng Teng Hsu
    • H01L21/28H01L21/285H01L21/768H01L23/522H01L21/44
    • H01L21/76844H01L21/76801H01L21/76807H01L21/76831H01L21/76865H01L23/5226H01L21/28568H01L21/76838H01L2924/0002H01L2924/3011
    • A method of forming a direct, copper-to-copper, connection between levels in an IC is disclosed. A via interconnection is formed by isotropically depositing a barrier material in a via through an insulator to a lower copper level, and then anisotropically etching the via to remove the barrier material covering the lower copper level. The anisotropic etch leaves the barrier material lining the via through the insulator. The subsequently deposited upper metal level then directly contacts the lower copper level when the via is filled. A dual damascene interconnection is formed by etching an interconnection trench in an insulator and anisotropically depositing a non-conductive barrier material in the trench bottom. Then a via is formed from the trench interconnect to a lower copper level. As above, a conductive barrier material is isotropically deposited in the trench/via structure, and anisotropically etched to remove the barrier material covering the lower copper level. The insulating barrier material, lining the trench and via, remains. An IC via interconnection structure and a dual damascene interconnection structure, made in accordance with the above described methods, are also provided.
    • 公开了一种在IC中形成直接铜铜铜连接电平的方法。 通过互连形成通过绝缘体将通孔绝缘体上的阻挡材料各向同性地沉积到较低的铜电平,然后各向异性地蚀刻通孔以除去覆盖较低铜层的阻挡材料。 各向异性蚀刻离开通过绝缘体衬套通孔的阻挡材料。 随后沉积的上层金属层,当通孔填充时,直接接触下铜层。 通过蚀刻绝缘体中的互连沟槽并且在沟槽底部中各向异性地沉积非导电阻挡材料来形成双镶嵌互连。 然后,通孔从沟槽互连形成为较低的铜层。 如上所述,导电阻挡材料在沟槽/通孔结构中各向同性地沉积,并进行各向异性蚀刻以去除覆盖较低铜层的阻挡材料。 绝缘阻隔材料,衬在沟槽和通孔,仍然存在。 还提供了根据上述方法制造的通过互连结构和双镶嵌互连结构的IC。
    • 102. 发明授权
    • Method for fabricating an asymmetric channel doped MOS structure
    • 制造不对称沟道掺杂MOS结构的方法
    • US5891782A
    • 1999-04-06
    • US918678
    • 1997-08-21
    • Sheng Teng HsuJong Jan Lee
    • Sheng Teng HsuJong Jan Lee
    • H01L29/78H01L21/336H01L29/786H01L21/8234
    • H01L29/78624H01L29/66772H01L29/78696
    • A method of forming a MOS transistor without a lightly doped drain (LDD) region between the channel region and drain is provided. The channel region is formed from a tilted ion implantation after the deposition of the gate oxide layer. The tilted implantation forms a relatively short channel length, with respect to the length of the gate electrode. The position of the channel is offset, and directly adjoins the source. The non-channel area under the gate, adjacent the drain, replaces the LDD region between the channel and the drain. This drain extension acts to more evenly distribute electric fields so that large breakdown voltages are possible. The small channel length, and eliminated LDD region adjacent the source, act to reduce resistance between the source and drain. In this manner, larger I.sub.d currents and faster switching speeds are obtained. A MOS transistor having a short, offset channel and drain extension is also provided.
    • 提供了一种形成在沟道区和漏极之间没有轻掺杂漏极(LDD)区的MOS晶体管的方法。 沟道区域是在淀积栅极氧化物层之后由倾斜的离子注入形成的。 相对于栅电极的长度,倾斜注入形成相对短的沟道长度。 通道的位置偏移,并直接与源相邻。 在漏极附近的栅极下方的非沟道区域替代通道和漏极之间的LDD区域。 这种漏极扩展用于更均匀地分布电场,使得可以实现大的击穿电压。 较小的通道长度和消除与源极相邻的LDD区域起到降低源极和漏极之间的电阻的作用。 以这种方式,获得更大的Id电流和更快的开关速度。 还提供了具有短的偏置沟道和漏极延伸的MOS晶体管。
    • 103. 发明授权
    • Back-to-back metal/semiconductor/metal (MSM) Schottky diode
    • 背对背金属/半导体/金属(MSM)肖特基二极管
    • US07968419B2
    • 2011-06-28
    • US12234663
    • 2008-09-21
    • Tingkai LiSheng Teng HsuDavid R. Evans
    • Tingkai LiSheng Teng HsuDavid R. Evans
    • H01L21/20
    • H01L27/101G11C13/0007G11C2213/31H01L27/2409H01L29/66143H01L29/872H01L45/04H01L45/1233H01L45/147
    • A method is provided for forming a metal/semiconductor/metal (MSM) back-to-back Schottky diode from a silicon (Si) semiconductor. The method deposits a Si semiconductor layer between a bottom electrode and a top electrode, and forms a MSM diode having a threshold voltage, breakdown voltage, and on/off current ratio. The method is able to modify the threshold voltage, breakdown voltage, and on/off current ratio of the MSM diode in response to controlling the Si semiconductor layer thickness. Generally, both the threshold and breakdown voltage are increased in response to increasing the Si thickness. With respect to the on/off current ratio, there is an optimal thickness. The method is able to form an amorphous Si (a-Si) and polycrystalline Si (polySi) semiconductor layer using either chemical vapor deposition (CVD) or DC sputtering. The Si semiconductor can be doped with a Group V donor material, which decreases the threshold voltage and increases the breakdown voltage.
    • 提供了用于从硅(Si)半导体形成金属/半导体/金属(MSM)背对背肖特基二极管的方法。 该方法在底电极和顶电极之间沉积Si半导体层,并形成具有阈值电压,击穿电压和开/关电流比的MSM二极管。 响应于控制Si半导体层厚度,该方法能够修改MSM二极管的阈值电压,击穿电压和导通/截止电流比。 通常,响应于Si厚度的增加,阈值和击穿电压都增加。 关于开/关电流比,存在最佳厚度。 该方法能够使用化学气相沉积(CVD)或DC溅射形成非晶Si(a-Si)和多晶硅(polySi)半导体层。 Si半导体可以掺杂有V族施主材料,其降低阈值电压并增加击穿电压。
    • 104. 发明授权
    • Method of etching a TE/PCMO stack using an etch stop layer
    • 使用蚀刻停止层蚀刻TE / PCMO堆叠的方法
    • US07727897B2
    • 2010-06-01
    • US11215519
    • 2005-08-30
    • Bruce D. UlrichLisa H. SteckerFengyan ZhangSheng Teng Hsu
    • Bruce D. UlrichLisa H. SteckerFengyan ZhangSheng Teng Hsu
    • H01L21/302
    • H01L28/55H01L21/31122
    • A method of etching a top electrode/ferroelectric stack using an etch stop layer includes forming a first layer of a first dielectric material on a substrate; forming a bottom electrode in the first layer of a first dielectric material; depositing an etch stop layer on the first layer of the first dielectric material and the bottom electrode, including forming a hole therein; depositing a layer of ferroelectric material and depositing top electrode material on the ferroelectric material to form a top electrode/ferroelectric stack; stack etching the top electrode and ferroelectric material; depositing a layer of a second dielectric material encapsulating the top electrode and ferroelectric material; etching the layer of the second dielectric material to form a sidewall about the top electrode and ferroelectric material; and depositing a second and third layers of the first dielectric material.
    • 使用蚀刻停止层蚀刻顶部电极/铁电体堆叠的方法包括在衬底上形成第一电介质材料的第一层; 在第一介电材料的第一层中形成底电极; 在所述第一电介质材料和所述底电极的所述第一层上沉积蚀刻停止层,包括在其中形成孔; 沉积一层铁电材料层并在铁电材料上沉积顶部电极材料以形成顶部电极/铁电堆叠; 堆叠蚀刻顶部电极和铁电材料; 沉积封装上电极和铁电材料的第二电介质材料层; 蚀刻第二介电材料的层以形成围绕顶电极和铁电材料的侧壁; 以及沉积所述第一介电材料的第二和第三层。
    • 105. 发明授权
    • Germanium phototransistor with floating body
    • 具有浮体的锗光电晶体管
    • US07675056B2
    • 2010-03-09
    • US11891574
    • 2007-08-10
    • Jong-Jan LeeSheng Teng HsuJer-Shen MaaDouglas J. Tweet
    • Jong-Jan LeeSheng Teng HsuJer-Shen MaaDouglas J. Tweet
    • H01L29/06H01L31/072H01L31/109H01L31/0328H01L31/062H01L31/113H01L31/0232
    • H01L31/1136H01L31/028H01L31/1808Y02E10/547
    • A floating body germanium (Ge) phototransistor and associated fabrication process are presented. The method includes: providing a silicon (Si) substrate; selectively forming an insulator layer overlying the Si substrate; forming an epitaxial Ge layer overlying the insulator layer using a liquid phase epitaxy (LPE) process; forming a channel region in the Ge layer; forming a gate dielectric, gate electrode, and gate spacers overlying the channel region; and, forming source/drain regions in the Ge layer. The LPE process involves encapsulating the Ge with materials having a melting temperature greater than a first temperature, and melting the Ge using a temperature lower than the first temperature. The LPE process includes: forming a dielectric layer overlying deposited Ge; melting the Ge; and, in response to cooling the Ge, laterally propagating an epitaxial growth front into the Ge from an underlying Si substrate surface.
    • 提出了一种浮体锗(Ge)光电晶体管及其制造工艺。 该方法包括:提供硅(Si)衬底; 选择性地形成覆盖Si衬底的绝缘体层; 使用液相外延(LPE)工艺形成覆盖绝缘体层的外延Ge层; 在Ge层中形成沟道区; 形成覆盖所述沟道区的栅极电介质,栅电极和栅极间隔; 并且在Ge层中形成源/漏区。 LPE工艺包括用具有大于第一温度的熔化温度的材料包封Ge,并且使用低于第一温度的温度来熔化Ge。 LPE工艺包括:形成覆盖沉积Ge的介电层; 融化Ge; 并且响应于冷却Ge,将外延生长前沿从下面的Si衬底表面横向传播到Ge中。
    • 106. 发明授权
    • Fully isolated photodiode stack
    • 全隔离光电二极管堆叠
    • US07608874B2
    • 2009-10-27
    • US11657152
    • 2007-01-24
    • Jong-Jan LeeDouglas J. TweetSheng Teng Hsu
    • Jong-Jan LeeDouglas J. TweetSheng Teng Hsu
    • H01L31/062H01L31/113
    • H01L27/14647H01L27/1463H01L27/14689
    • An array of fully isolated multi-junction complimentary metal-oxide-semiconductor (CMOS) filterless color imager cells is provided, together with an associated fabrication method. The method provides a bulk silicon (Si) substrate. A plurality of color imager cells are formed, either in the Si substrate, or in a single epitaxial Si layer formed over the substrate. Each color imager cell includes a photodiode set with a first, second, and third photodiode formed as a stacked multi-junction structure. A U-shaped (in cross-section) well liner, fully isolates the photodiode set from adjacent photodiode sets in the array. For example, each photodiode is formed from a p doped Si layer physically interfaced to a first wall. A well bottom physically interfaces to the first wall, and the p doped Si layer of the third, bottom-most, photodiode is part of the well bottom. Then, the photodiode sets may be formed from an n/p/n/p/n/p or n/p/p−/p/p−/p layered structure.
    • 提供了完全隔离的多结互补金属氧化物半导体(CMOS)无滤膜彩色成像器单元的阵列,以及相关的制造方法。 该方法提供体硅(Si)衬底。 在Si衬底中或在衬底上形成的单个外延Si层中形成多个彩色成像器单元。 每个彩色成像器单元包括具有形成为堆叠多结结构的第一,第二和第三光电二极管。 U形(横截面)井衬管,将阵列中的光电二极管组与相邻的光电二极管组完全隔离。 例如,每个光电二极管由物理上与第一壁物理连接的p掺杂Si层形成。 阱底部与第一壁物理接口,第三,最底部的光电二极管的p掺杂Si层是阱底部的一部分。 然后,光电二极管组可以由n / p / n / p / n / p或n / p / p / p / p / p层叠结构形成。
    • 107. 发明授权
    • MSM binary switch memory
    • MSM二进制开关存储器
    • US07608514B2
    • 2009-10-27
    • US11900999
    • 2007-09-15
    • Sheng Teng HsuTingkai Li
    • Sheng Teng HsuTingkai Li
    • H01L21/336
    • H01L27/101G11C13/0007G11C2213/31H01L27/2409H01L27/2463H01L29/66143H01L29/872H01L45/04H01L45/1233H01L45/147
    • A metal/semiconductor/metal (MSM) binary switch memory device and fabrication process are provided. The device includes a memory resistor bottom electrode, a memory resistor material over the memory resistor bottom electrode, and a memory resistor top electrode over the memory resistor material. An MSM bottom electrode overlies the memory resistor top electrode, a semiconductor layer overlies the MSM bottom electrode, and an MSM top electrode overlies the semiconductor layer. The MSM bottom electrode can be a material such as Pt, Ir, Au, Ag, TiN, or Ti. The MSM top electrode can be a material such as Pt, Ir, Au, TiN, Ti, or Al. The semiconductor layer can be amorphous Si, ZnO2, or InO2.
    • 提供金属/半导体/金属(MSM)二进制开关存储器件和制造工艺。 该器件包括存储器电阻器底部电极,存储器电阻器底部电极上方的存储器电阻器材料,以及存储器电阻器材料上的存储器电阻器顶部电极。 MSM底部电极覆盖存储电阻器顶部电极,半导体层覆盖在MSM底部电极上,并且MSM顶部电极覆盖半导体层。 MSM底部电极可以是诸如Pt,Ir,Au,Ag,TiN或Ti的材料。 MSM顶部电极可以是诸如Pt,Ir,Au,TiN,Ti或Al的材料。 半导体层可以是非晶Si,ZnO 2或InO 2。
    • 108. 发明授权
    • Rare earth element-doped oxide precursor with silicon nanocrystals
    • 具有硅纳米晶体的稀土元素掺杂氧化物前体
    • US07585788B2
    • 2009-09-08
    • US11224549
    • 2005-09-12
    • Wei-Wei ZhuangYoshi OnoSheng Teng HsuTingkai Li
    • Wei-Wei ZhuangYoshi OnoSheng Teng HsuTingkai Li
    • H01L21/31
    • H01L21/02156H01L21/02282H01L21/316
    • A method is provided for forming a rare earth element-doped silicon oxide (SiO2) precursor with nanocrystalline (nc) Si particles. In one aspect the method comprises: mixing Si particles into a first organic solvent, forming a first solution with a first boiling point; filtering the first solution to remove large Si particles; mixing a second organic solvent having a second boiling point, higher than the first boiling point, to the filtered first solution; and, fractionally distilling, forming a second solution of nc Si particles. The Si particles are formed by immersing a Si wafer into a third solution including hydrofluoric (HF) acid and alcohol, applying an electric bias, and forming a porous Si layer overlying the Si wafer. Then, the Si particles are mixed into the organic solvent by depositing the Si wafer into the first organic solvent, and ultrasonically removing the porous Si layer from the Si wafer.
    • 提供了一种用于形成具有纳米晶体(nc)Si颗粒的稀土元素掺杂的氧化硅(SiO 2)前体的方法。 一方面,该方法包括:将Si颗粒混合到第一有机溶剂中,形成具有第一沸点的第一溶液; 过滤第一溶液以除去大的Si颗粒; 将具有高于第一沸​​点的第二沸点的第二有机溶剂与过滤的第一溶液混合; 并分馏,形成nc Si颗粒的第二溶液。 通过将Si晶片浸入包括氢氟酸(HF)酸和醇的第三溶液中,施加电偏压并形成覆盖Si晶片的多孔Si层,形成Si颗粒。 然后,通过将Si晶片沉积到第一有机溶剂中,将Si颗粒混入有机溶剂中,并从Si晶片超声波除去多孔Si层。
    • 110. 发明申请
    • OPTICAL DEVICE WITH IROX NANOSTRUTURE ELECTRODE NEURAL INTERFACE
    • 光学器件与IROX纳米电极神经接口
    • US20090011536A1
    • 2009-01-08
    • US11496157
    • 2006-07-31
    • Fengyan ZhangSheng Teng Hsu
    • Fengyan ZhangSheng Teng Hsu
    • H01L21/00
    • C30B25/00A61N1/0543B82Y5/00B82Y10/00B82Y30/00C30B29/16C30B29/605Y10S977/811Y10S977/904Y10S977/932
    • An optical device with an iridium oxide (IrOx) electrode neural interface, and a corresponding fabrication method are provided. The method provides a substrate and forms a first conductive electrode overlying the substrate. A photovoltaic device having a first electrical interface is connected to the first electrode. A second electrical interface of the photovoltaic device is connected to a second conductive electrode formed overlying the photovoltaic device. An array of neural interface single-crystal IrOx nanostructures are formed overlying the second electrode, where x≦4. The IrOx nanostructures can be partially coated with an electrical insulator, such as SiO2, SiN, TiO2, or spin on glass (SOG), leaving the IrOx distal ends exposed. In one aspect, a buffer layer is formed overlying the second electrode surface, made from a material such as LiNbO3, LiTaO3, or SA, for the purpose of orienting the growth direction of the IrOx nanostructures.
    • 提供了具有氧化铱(IrOx)电极神经接口的光学器件及相应的制造方法。 该方法提供了一个衬底并且形成了覆盖衬底的第一导电电极。 具有第一电接口的光电器件连接到第一电极。 光电器件的第二电接口连接到形成在光伏器件上的第二导电电极。 形成了覆盖第二电极的神经界面单晶IrOx纳米结构阵列,其中x <= 4。 IrOx纳米结构可以部分地涂覆有诸如SiO 2,SiN,TiO 2或旋转玻璃(SOG)之类的电绝缘体,使得IrOx远端暴露。 在一个方面,为了定向IrOx纳米结构的生长方向,形成了由诸如LiNbO 3,LiTaO 3或SA的材料制成的第二电极表面上的缓冲层。