会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 91. 发明申请
    • Jitter-Free Divider
    • 无抖动分频器
    • US20090167374A1
    • 2009-07-02
    • US12405905
    • 2009-03-17
    • Yu HuangWei Fu
    • Yu HuangWei Fu
    • H03K21/00
    • H03K23/68
    • A system and method are provided for jitter-free fractional division. The method accepts a first plurality of first signal phases, each phase having a first frequency. To make the division jitter-free, a phase is selected subsequent to deselecting a previous phase selection. The selected phase is divided by the integer N, supplying a second signal with a second frequency. Using the second signal as a clock, a first plurality of counts is triggered in series, and the counts are used to select a corresponding phase. The first signal may separate neighboring phases by 90 degrees. Then, for (N+0.25), a first count triggers a second count and selects the first phase, the second count triggers a third count and selects the second phase, the third count triggers a fourth count and selects the third phase, and the fourth count trigger the first count and selects the fourth phase.
    • 提供了一种用于无抖动分数除法的系统和方法。 该方法接受第一多个第一信号相位,每个相位具有第一频率。 为了使分频无抖动,在取消选择先前的相位选择之后选择相位。 所选择的相位除以整数N,提供具有第二频率的第二信号。 使用第二信号作为时钟,串联地触发第一多个计数,并且使用计数来选择相应的相位。 第一个信号可以将相邻相位分离90度。 然后,对于(N + 0.25),第一计数触发第二计数并选择第一相位,第二计数触发第三计数并选择第二相位,第三计数触发第四计数并选择第三相,并且 第四计数触发第一个计数并选择第四个阶段。
    • 96. 发明授权
    • Nanoscale coherent optical components
    • 纳米级相干光学元件
    • US07254151B2
    • 2007-08-07
    • US10734086
    • 2003-12-11
    • Charles M. LieberXiangfeng DuanYu HuangRitesh Agarwal
    • Charles M. LieberXiangfeng DuanYu HuangRitesh Agarwal
    • H01S5/00
    • G11C13/025B82Y10/00B82Y20/00B82Y30/00G11C2213/17G11C2213/18H01S5/021H01S5/10H01S5/12H01S5/20H01S5/341H01S5/343H01S5/347Y10S977/825Y10S977/951
    • This invention generally relates to nanotechnology and nanoelectronics as well as associated methods and devices. In particular, the invention relates to nanoscale optical components such as electroluminescence devices (e.g., LEDs), amplified stimulated emission devices (e.g., lasers), waveguides, and optical cavities (e.g., resonators). Articles and devices of a size greater than the nanoscale are also included. Such devices can be formed from nanoscale wires such as nanowires or nanotubes. In some cases, the nanoscale wire is a single crystal. In one embodiment, the nanoscale laser is constructed as a Fabry-Perot cavity, and is driven by electrical injection. Any electrical injection source may be used. For example, electrical injection may be accomplished through a crossed wire configuration, an electrode or distributed electrode configuration, or a core/shell configuration. The output wavelength can be controlled, for example, by varying the types of materials used to fabricate the device. One or more such nanoscale lasers may also be integrated with other nanoscale components within a device.
    • 本发明一般涉及纳米技术和纳米电子学以及相关的方法和装置。 特别地,本发明涉及纳米尺度光学部件,例如电致发光器件(例如,LED),放大的受激发射器件(例如,激光器),波导和光学腔(例如谐振器)。 还包括尺寸大于纳米尺寸的物品和装置。 这样的器件可以由诸如纳米线或纳米管的纳米尺寸线形成。 在某些情况下,纳米线是单晶。 在一个实施例中,纳米级激光器被构造为法布里 - 珀罗腔,并且通过电注入驱动。 可以使用任何电喷射源。 例如,电注入可以通过交叉线配置,电极或分布电极配置或核/壳配置来实现。 可以例如通过改变用于制造器件的材料的类型来控制输出波长。 一个或多个这样的纳米尺度激光器也可以与器件内的其他纳米级组件集成。