会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • METHOD AND APPARATUS FOR GENERATING MULTI-VIEWPOINT DEPTH MAP, METHOD FOR GENERATING DISPARITY OF MULTI-VIEWPOINT IMAGE
    • 用于生成多视点深度图的方法和装置,用于生成多视点图像的差异的方法
    • US20100309292A1
    • 2010-12-09
    • US12745099
    • 2008-11-28
    • Yo-Sung HOEun-Kyung LeeSung-Yeol Kim
    • Yo-Sung HOEun-Kyung LeeSung-Yeol Kim
    • H04N13/02G06K9/00
    • G06T7/55H04N13/261
    • There are provided a method and an apparatus for generating a multi-viewpoint depth map, and a method for generating a disparity of a multi-viewpoint image. A method for generating a multi-viewpoint depth map according to the present invention includes the steps of: (a) acquiring a multi-viewpoint image constituted by a plurality of images by using a plurality of cameras (b) acquiring an image and depth information by using a depth camera; (c) estimating coordinates of the same point in a space in the plurality of images by using the acquired depth information; (d) determining disparities in the plurality of images with respect to in the same point by searching a predetermined region around the estimated coordinates; and (e) generating a multi-viewpoint depth map by using the determined disparities. According to the above-mentioned present invention, it is possible to generate a multi-viewpoint depth map within a shorter time and generate a multi-viewpoint depth map having higher quality than a multi-viewpoint depth map generated by using known stereo matching.
    • 提供了一种用于生成多视点深度图的方法和装置,以及用于产生多视点图像的视差的方法。 根据本发明的用于生成多视点深度图的方法包括以下步骤:(a)通过使用多个照相机(b)获取由多个图像构成的多视点图像(b)获取图像和深度信息 通过使用深度相机; (c)通过使用获取的深度信息估计多个图像中的空间中的相同点的坐标; (d)通过搜索估计坐标周围的预定区域来确定在相同点上的多个图像中的差异; 和(e)通过使用确定的差异来生成多视点深度图。 根据上述本发明,可以在更短的时间内生成多视点深度图,并且生成比通过使用已知的立体匹配产生的多视点深度图具有更高质量的多视点深度图。
    • 4. 发明申请
    • Silicon light-receiving device
    • 硅光接收装置
    • US20050073019A1
    • 2005-04-07
    • US10502765
    • 2002-10-16
    • Eun-Kyung LeeByoung-Lyong ChoiJun-Young Kim
    • Eun-Kyung LeeByoung-Lyong ChoiJun-Young Kim
    • H01L31/10H01L31/028H01L31/0352H01L31/042H01L31/068H01L31/103H01L31/06
    • H01L31/028H01L31/035281H01L31/068H01L31/103Y02E10/547
    • A silicon light-receiving device is provided. In the device, a substrate is based on n-type or p-type silicon. A doped region is ultra-shallowly doped with the opposite type dopant to the dopant type of the substrate on one side of the substrate so that a photoelectric conversion effect for light in a wavelength range of 100-1100 nm is generated by a quantum confinement effect in the p-n junction with the substrate. First and second electrodes are formed on the substrate so as to be electrically connected to the doped region. Due to the ultra-shallow doped region on the silicon substrate, a quantum confinement effect is generated in the p-n junction. Even though silicon is used as a semiconductor material, the quantum efficiency of the silicon light-receiving device is far higher than that of a conventional solar cell, owing to the quantum confinement effect. The silicon light-receiving device can also be formed to absorb light in a particular or large wavelength band, and used as a solar cell.
    • 提供硅光接收装置。 在该器件中,衬底基于n型或p型硅。 掺杂区域在衬底的一侧上与衬底的掺杂剂类型相反的掺杂剂超浅掺杂,使得通过量子限制效应产生在100-1100nm的波长范围内的光的光电转换效应 在与基板的pn结中。 第一和第二电极形成在衬底上,以便与掺杂区电连接。 由于硅衬底上的超浅掺杂区域,在p-n结中产生量子限制效应。 即使使用硅作为半导体材料,由于量子限制效应,硅光接收装置的量子效率远远高于常规太阳能电池的量子效率。 硅光接收装置也可以形成为吸收特定或大波长带中的光,并用作太阳能电池。
    • 6. 发明授权
    • Silicon light-receiving device
    • 硅光接收装置
    • US07253491B2
    • 2007-08-07
    • US10502765
    • 2002-10-16
    • Eun-Kyung LeeByoung-Lyong ChoiJun-Young Kim
    • Eun-Kyung LeeByoung-Lyong ChoiJun-Young Kim
    • H01L31/06H01L27/14H01L31/00
    • H01L31/028H01L31/035281H01L31/068H01L31/103Y02E10/547
    • A silicon light-receiving device is provided. In the device, a substrate is based on n-type or p-type silicon. A doped region is ultra-shallowly doped with the opposite type dopant to the dopant type of the substrate on one side of the substrate so that a photoelectric conversion effect for light in a wavelength range of 100-1100 nm is generated by a quantum confinement effect in the p-n junction with the substrate. First and second electrodes are formed on the substrate so as to be electrically connected to the doped region. Due to the ultra-shallow doped region on the silicon substrate, a quantum confinement effect is generated in the p-n junction. Even though silicon is used as a semiconductor material, the quantum efficiency of the silicon light-receiving device is far higher than that of a conventional solar cell, owing to the quantum confinement effect. The silicon light-receiving device can also be formed to absorb light in a particular or large wavelength band, and used as a solar cell.
    • 提供硅光接收装置。 在该器件中,衬底基于n型或p型硅。 掺杂区域在衬底的一侧上与衬底的掺杂剂类型相反的掺杂剂超浅掺杂,使得通过量子限制效应产生在100-1100nm的波长范围内的光的光电转换效应 在与基板的pn结中。 第一和第二电极形成在衬底上,以便与掺杂区电连接。 由于硅衬底上的超浅掺杂区域,在p-n结中产生量子限制效应。 即使使用硅作为半导体材料,由于量子限制效应,硅光接收装置的量子效率远远高于常规太阳能电池的量子效率。 硅光接收装置也可以形成为吸收特定或大波长带中的光,并用作太阳能电池。
    • 9. 发明申请
    • Gate structure including multi-tunneling layer and method of fabricating the same, non-volatile memory device and method of fabricating the same
    • 包括多隧道层的栅结构及其制造方法,非易失性存储器件及其制造方法
    • US20070114572A1
    • 2007-05-24
    • US11600737
    • 2006-11-17
    • Kwang-Soo SeolWoong-Chul ShinByung KimEun-Kyung LeeKyung-Sang Cho
    • Kwang-Soo SeolWoong-Chul ShinByung KimEun-Kyung LeeKyung-Sang Cho
    • H01L29/76
    • H01L29/42332B82Y10/00H01L27/115H01L29/7881
    • Provided is a gate structure including a multi-tunneling layer and method of fabricating the same. Also provided is a nanodot semiconductor memory device including such gate structure and method of fabricating the same. The gate structure may include a first insulation layer, a second insulation layer, a charge storage layer including nanodots and formed on the second insulation layer, a third insulation layer formed on the charge storage layer, and a gate electrode layer formed on the third insulation layer. There may also be a nanodot semiconductor memory device including a semiconductor substrate, in which a first impurity region and a second impurity region may be formed, and including the gate structure formed on the semiconductor substrate which contacts the first and second impurity regions. The second insulation layer may be formed on the first insulation layer and may include a material whose energy level may be lower than an energy level of the conduction band of the first insulation layer and higher an energy level of the valence band of the first insulation layer.
    • 提供一种包括多隧道层的栅极结构及其制造方法。 还提供了包括这种栅极结构的纳米点半导体存储器件及其制造方法。 栅极结构可以包括第一绝缘层,第二绝缘层,包括纳米点并形成在第二绝缘层上的电荷存储层,形成在电荷存储层上的第三绝缘层,以及形成在第三绝缘层上的栅电极层 层。 还可以存在包括可以形成第一杂质区域和第二杂质区域的半导体衬底的纳米点半导体存储器件,并且包括形成在与第一和第二杂质区域接触的半导体衬底上的栅极结构。 第二绝缘层可以形成在第一绝缘层上,并且可以包括其能级可以低于第一绝缘层的导带的能级的材料,并且第一绝缘层的价带的能级越高 。