会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Filling narrow apertures and forming interconnects with a metal utilizing a crystallographically oriented liner layer
    • 填充狭窄的孔径并与金属形成互连,利用晶体取向的衬层
    • US06217721B1
    • 2001-04-17
    • US08628835
    • 1996-04-05
    • Zheng XuJohn ForsterTse-Yong YaoJaim NulmanFusen Chen
    • Zheng XuJohn ForsterTse-Yong YaoJaim NulmanFusen Chen
    • C23C1434
    • H01L21/2855C23C14/0036C23C14/046C23C14/0641C23C14/32C23C14/358H01J37/34H01J2237/32H01L21/28518H01L21/76846H01L21/76876H01L21/76877H01L21/76882H01L23/485H01L23/5226H01L23/53223H01L23/53233H01L23/53238H01L2924/0002H01L2924/00
    • An aluminum sputtering process, particularly useful for filling vias and contacts of high aspect ratios formed through a dielectric layer and also usefull for forming interconnects that are highly resistant to electromigration. A liner or barrier layer is first deposited by a high-density plasma (HDP) physical vapor deposition (PVD, also called sputtering) process, such as is done with an inductively coupled plasma. If a contact is connected at its bottom to a silicon element, the first sublayer of the liner layer is a Ti layer, which is silicided to the silicon substrate. The second sublayer comprises TiN, which not only acts as a barrier against the migration of undesirable components into the underlying silicon but also when deposited with an HDP process and biased wafer forms a dense, smooth crystal structure. The third sublayer comprises Ti and preferably is graded from TiN to Ti. Over the liner layer, an aluminum layer is deposited in a standard, non-HDP process. The liner layer allows the hottest part of the aluminum deposition to be performed at a relatively low temperature between 320 and 500° C., preferably between 350 and 420° C., while still filling narrow plug holes, and the TiN does not need to be annealed to form an effective barrier against diffusion into the silicon. A horizontal interconnect formed by the inventive process is resistant to electromigration.
    • 铝溅射工艺,特别适用于填充通过电介质层形成的高纵横比的通孔和触点,并且也可用于形成高度抵抗电迁移的互连。 衬垫或阻挡层首先通过高密度等离子体(HDP)物理气相沉积(PVD,也称为溅射)工艺沉积,例如用电感耦合等离子体进行。 如果接触件的底部连接到硅元件,衬垫层的第一子层是Ti层,硅层被硅化到硅衬底。 第二子层包括TiN,其不仅用作防止不期望的组分迁移到下面的硅中的阻挡层,而且当用HDP工艺沉积并且偏置的晶片形成致密的,平滑的晶体结构时。 第三子层包含Ti,优选从TiN到Ti分级。 在衬里层上,铝层以标准的非HDP工艺沉积。 衬垫层允许铝沉积的最热部分在320和500℃之间的较低温度下进行,优选在350和420℃之间,同时仍然填充窄的塞孔,并且TiN不需要 进行退火以形成抵抗硅中扩散的有效屏障。 由本发明方法形成的水平互连对于电迁移是耐受的。
    • 6. 发明授权
    • Integrated circuit structure having contact openings and vias filled by
self-extrusion of overlying metal layer
    • 具有接触开口和通过上覆金属层的自挤压填充的通孔的集成电路结构
    • US5847461A
    • 1998-12-08
    • US664717
    • 1996-06-17
    • Zheng XuTse-Yong YaoHoa KieuJulio Aranovich
    • Zheng XuTse-Yong YaoHoa KieuJulio Aranovich
    • H01L21/28H01L21/768H01L23/532H01L23/48H01L23/52H01L29/40
    • H01L23/53223H01L21/76877H01L2924/0002
    • A process and resulting structure are described for using a metal layer formed over an insulating layer as both the filler material to fill openings in the insulating layer and as the patterned metal interconnect or wiring harness on the surface of the insulating layer. The process includes the steps of forming a compressively stressed metal layer over an insulating layer having previously formed openings therethrough to the material under the insulating layer; forming a high tensile strength cap layer of material over the compressively stressed metal layer; and then heating the structure to a temperature sufficient to cause the compressively stressed metal layer to extrude down into the openings in the underlying insulating layer. The overlying cap layer has sufficient tensile strength to prevent or inhibit the compressive stressed metal layer from extruding upwardly to form hillocks which would need to be removed, i.e., by planarization. The temperature to which the compressively stressed metal layer is subsequently heated to cause it to extrude should be less than the melting point of the compressively stressed metal layer.
    • 描述了使用在绝缘层上形成的金属层作为填充材料填充绝缘层中的开口并且作为图案化的金属互连或线束在绝缘层的表面上的工艺和结果。 该方法包括以下步骤:在预先形成的开口的绝缘层上形成压电应力金属层到绝缘层下面的材料; 在压应力金属层上形成高抗拉强度的覆盖层; 然后将结构加热到足以使压应力金属层向下挤压到下面的绝缘层中的开口中的温度。 上覆盖层具有足够的拉伸强度,以防止或抑制压应力金属层向上挤出以形成需要去除的小丘,即通过平坦化。 压缩应力金属层随后加热使其挤出的温度应小于压应力金属层的熔点。
    • 7. 发明授权
    • Method of filling of contact openings and vias by self-extrusion of
overlying compressively stressed matal layer
    • 通过上覆压缩金属层的自挤压填充接触孔和通孔的方法
    • US5668055A
    • 1997-09-16
    • US435774
    • 1995-05-05
    • Zheng XuTse-Yong YaoHoa KieuJulio Aranovich
    • Zheng XuTse-Yong YaoHoa KieuJulio Aranovich
    • H01L21/28H01L21/768H01L23/532H01L21/44
    • H01L23/53223H01L21/76877H01L2924/0002
    • A process and resulting structure are described for using a metal layer formed over an insulating layer as both the filler material to fill openings in the insulating layer and as the patterned metal interconnect or wiring harness on the surface of the insulating layer. The process includes the steps of forming a compressively stressed metal layer over an insulating layer having previously formed openings therethrough to the material under the insulating layer; forming a high tensile strength cap layer of material over the compressively stressed metal layer; and then heating the structure to a temperature sufficient to cause the compressively stressed metal layer to extrude down into the openings in the underlying insulating layer. The overlying cap layer has sufficient tensile strength to prevent or inhibit the compressive stressed metal layer from extruding upwardly to form hillocks which would need to be removed, i.e., by planarization. The temperature to which the compressively stressed metal layer is subsequently heated to cause it to extrude should be less than the melting point of the compressively stressed metal layer.
    • 描述了使用在绝缘层上形成的金属层作为填充材料填充绝缘层中的开口并且作为图案化的金属互连或线束在绝缘层的表面上的工艺和结果。 该方法包括以下步骤:在预先形成的开口的绝缘层上形成压电应力金属层到绝缘层下面的材料; 在压应力金属层上形成高抗拉强度的覆盖层; 然后将结构加热到足以使压应力金属层向下挤压到下面的绝缘层中的开口中的温度。 上覆盖层具有足够的拉伸强度,以防止或抑制压应力金属层向上挤出以形成需要去除的小丘,即通过平坦化。 压缩应力金属层随后加热使其挤出的温度应小于压应力金属层的熔点。