会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • System for decoupling EGR flow and turbocharger swallowing capacity/efficiency control mechanisms
    • 用于去耦EGR流量和涡轮增压器吞吐能力/效率控制机制的系统
    • US06408834B1
    • 2002-06-25
    • US09773654
    • 2001-01-31
    • Lary J. BrackneyThomas A. DollmeyerPaul R. MillerChuan He
    • Lary J. BrackneyThomas A. DollmeyerPaul R. MillerChuan He
    • F02M2507
    • F02D41/0052F02B37/18F02B37/24F02D9/04F02D41/0007F02D41/0065F02D41/1401F02D2041/1419F02D2041/1422F02D2041/1427F02M26/05F02M26/10F02M26/23F02M26/47Y02T10/144Y02T10/47
    • A system for decoupling EGR flow and turbocharger swallowing capacity/efficiency control mechanisms includes a multiple-input multiple-output (MIMO) transform manager coupled to one or more of an EGR valve, an exhaust throttle and a variable geometry turbocharger (VGT) actuator of an internal combustion engine. The MIMO transform manager is responsive to commanded charge flow and EGR fraction parameters to decouple the EGR/exhaust throttle and VGT control parameters such that these control mechanisms may be controlled individually and independently of each other. One transform output is provided to a first compensator for controlling EGR flow and/or exhaust throttle operation as a function of charge flow error. The other transform output is provided to a second independent compensator for controlling VGT operation also as a function of charge flow error. Both compensators are configured to provide for transient compensator gain adjustment based on the degree of charge flow error, and the VGT compensator is further configured to provide for transient compensator gain adjustment based on a ratio of commanded fueling and oxygen/fuel ratio. The resulting control strategy provides for independent control of EGR flow/exhaust throttle and a VGT actuator, thereby resulting in better and more consistent control over mass charge flow.
    • 用于去耦EGR流和涡轮增压器吞咽能力/效率控制机构的系统包括多输入多输出(MIMO)变换管理器,其耦合到一个或多个EGR阀,排气节流阀和可变几何涡轮增压器(VGT)致动器 内燃机 MIMO变换管理器响应于指令的充电流量和EGR分数参数来解耦EGR /排气节流阀和VGT控制参数,使得这些控制机构可以彼此独立地且独立地被控制。 一个变换输出被提供给第一补偿器,用于控制作为电荷流动误差的函数的EGR流和/或排气节流操作。 另一变换输出提供给第二独立补偿器,用于控制VGT操作,也作为充电流量误差的函数。 两个补偿器被配置为基于充电流量误差的程度来提供瞬时补偿器增益调整,并且VGT补偿器还被配置为基于指令加油和氧气/燃料比的比率来提供瞬时补偿器增益调整。 所得到的控制策略提供了EGR流量/排气节流阀和VGT致动器的独立控制,从而导致对质量流量的更好和更一致的控制。
    • 3. 发明授权
    • Equivalence ratio-based system for controlling transient fueling in an internal combustion engine
    • 用于控制内燃机瞬时加油的等效比系统
    • US06508241B2
    • 2003-01-21
    • US09773068
    • 2001-01-31
    • Paul R. MillerChuan He
    • Paul R. MillerChuan He
    • F02D4100
    • F02D41/0062F02B29/0406F02B29/0493F02D41/0072F02D41/1454F02D41/187F02D2200/0411F02M26/05F02M26/23F02M26/33F02M26/47Y02T10/47
    • An equivalence ratio-based system for controlling transient engine fueling includes an engine controller responsive to a number of engine operating conditions to estimate a mass of oxygen trapped within a number of cylinders of an internal combustion engine. The engine controller is further operable to map current values of engine speed and commanded fueling to one of a number of predetermined maximum fuel-to-oxygen, or equivalence, ratio values (&PHgr;MAX). The engine controller is then operable to determine an oxygen/fuel control (OFC) limited fueling command (FOFCL) as a function of the estimated oxygen mass value and the maximum equivalence ratio, and to limit engine fueling based on the OFC limited fueling command FOFCL. In one embodiment, the engine controller is operable to fuel the engine according to a minimum of the OFC limited fueling command FOFCL and a default fueling command FDEF, although other fuel limiting strategies are contemplated.
    • 用于控制瞬时发动机燃料供应的基于等效比的系统包括响应于多个发动机操作条件的发动机控制器来估计在内燃机的多个气缸内捕获的氧气的质量。 发动机控制器还可操作以将发动机速度和命令的燃料供应的当前值映射到多个预定最大燃料 - 氧气或等效比值(PHIMAX)中的一个。 然后,发动机控制器可操作以根据估计的氧质量值和最大当量比来确定氧/燃料控制(OFC)限制加油命令(FOFCL),并且基于OFC限制加油命令FOFCL来限制发动机加油 。 在一个实施例中,发动机控制器可操作以根据OFC限制加油命令FOFCL和默认加油命令FDEF的最小值来燃料发动机,尽管考虑了其他燃料限制策略。
    • 4. 发明授权
    • Automated active variable geometry turbocharger diagnosis system
    • 自动主动变量几何涡轮增压器诊断系统
    • US06543227B2
    • 2003-04-08
    • US09774961
    • 2001-01-31
    • Chuan HePaul R. Miller
    • Chuan HePaul R. Miller
    • F02D2300
    • F02D23/00F02B37/24F02D41/0007F02D41/1408F02D41/22Y02T10/144Y02T10/40
    • The present invention relates to an engine diagnostic system for detecting malfunctions in an engine system having a variable geometry turbine exhaust system. The engine diagnosis system includes an electronic control module adapted to periodically initiate a preprogrammed variable geometry turbine diagnostic routine. The diagnostic routine includes the operations of sending a sinusoidal control signal to a pressure regulator, determining the configuration of the variable geometry turbine, determining the pressure of a capsule, calculating the configuration of the variable geometry turbine as a function of the sinusoidal control signal, calculating the pressure of the capsule as a function of the sinusoidal control signal, determining if a pressure sensor is in calibration, determining if the pressure regulator is malfunctioning, determining if the variable geometry turbine position sensor is in calibration, determining if the variable geometry turbine is malfunctioning, and displaying the results of the test.
    • 本发明涉及一种用于检测具有可变几何涡轮机排气系统的发动机系统中的故障的发动机诊断系统。 引擎诊断系统包括适于周期性启动预编程的可变几何涡轮诊断程序的电子控制模块。 诊断程序包括将正弦控制信号发送到压力调节器,确定可变几何涡轮机的配置,确定胶囊的压力,根据正弦控制信号计算可变几何涡轮机的配置的操作, 计算胶囊的压力作为正弦控制信号的函数,确定压力传感器是否在校准中,确定压力调节器是否发生故障,确定可变几何涡轮机位置传感器是否在校准中,确定可变几何涡轮机 发生故障,并显示测试结果。
    • 5. 发明授权
    • On-line self-calibration of mass airflow sensors in reciprocating engines
    • 往复式发动机中质量气流传感器的在线自校准
    • US06370935B1
    • 2002-04-16
    • US09173995
    • 1998-10-16
    • Chuan HePaul R. Miller
    • Chuan HePaul R. Miller
    • G01F2500
    • G01F25/0007F02D41/0055F02D41/0072F02D41/18F02D41/2438F02D41/2441F02D41/2474F02D41/2477F02D2200/0402F02D2200/0406Y02T10/47
    • In an internal combustion engine having an exhaust gas recirculation system, a mass airflow (MAF) sensor is disposed at the air inlet to an engine cylinder. For engines with an EGR recirculation path, the sensor is upstream of that path. The MAF sensor provides signals to an engine control module (ECM) indicative of the mass airflow of the intake charge to the engine. A system and method for on-line self-recalibration of the MAF sensor and the MAF values includes comparing the sensed MAF value with an ideal MAF value obtained using data from sensors downstream from the MAF sensor. If a comparison of the sensed versus the actual MAF values reveals that the MAF sensor is out of calibration, a regression analysis is applied to several data pairs of MAF sensor output magnitude and ideal MAF value to modify the relationship between MAF sensor output and sensed MAF value.
    • 在具有废气再循环系统的内燃机中,在发动机气缸的入口处设置质量气流(MAF)传感器。 对于具有EGR再循环路径的发动机,传感器位于该路径的上游。 MAF传感器向发动机控制模块(ECM)提供指示发动机进气量的质量气流的信号。 用于MAF传感器和MAF值的在线自重新校准的系统和方法包括将感测的MAF值与使用来自MAF传感器下游的传感器的数据获得的理想MAF值进行比较。 如果感测到的实际MAF值的比较显示MAF传感器不在校准,则回归分析被应用于MAF传感器输出幅度和理想MAF值的若干数据对,以修改MAF传感器输出和感测MAF之间的关系 值。
    • 7. 发明授权
    • Turbo speed sensor diagnostic for turbocharged engines
    • 用于涡轮增压发动机的Turbo速度传感器诊断
    • US07937996B2
    • 2011-05-10
    • US12141329
    • 2008-06-18
    • Chuan HeYun Xiao
    • Chuan HeYun Xiao
    • G01M15/00
    • F02D41/0007F02D41/222Y02T10/144Y02T10/40
    • A method of diagnosing operation of a turbo speed sensor that monitors a turbocharger in an internal combustion engine system includes determining whether the engine system is operating in one of a high speed and a low speed range and determining a threshold turbo speed value based on whether engine system is operating in one of the high speed and the low speed range. An actual turbo speed value of the turbocharger is monitored based on a signal generated by the turbo speed sensor. The actual turbo speed value is compared to the threshold turbo speed value and a diagnostic signal is generated based on the step of comparing.
    • 一种诊断内燃机系统中的涡轮增压器的涡轮速度传感器的操作的方法包括:确定发动机系统是否以高速和低速范围中的一个运行,并且基于发动机是否确定阈值涡轮转速值 系统运行在高速和低速范围之一。 基于由涡轮转速传感器产生的信号来监测涡轮增压器的实际涡轮转速值。 将实际的turbo速度值与阈值turbo速度值进行比较,并且基于比较步骤生成诊断信号。