会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • Immobilization of oligonucleotides and proteins in sugar-containing hydrogels
    • 寡糖和蛋白质在含糖水凝胶中的固定
    • US20050019884A1
    • 2005-01-27
    • US10627143
    • 2003-07-25
    • Mark SpectorDavid StengerCharles PattersonBrett MartinPaul Charles
    • Mark SpectorDavid StengerCharles PattersonBrett MartinPaul Charles
    • A61K9/00C07H1/00C07H15/00C08J3/00C12M1/34C12N11/00C12Q20060101C12Q1/00C12Q1/68G01N33/543G01N33/548
    • G01N33/548G01N33/54353
    • We describe the novel use of a sugar-containing hydrogels as very highly porous, aqueous support material for the immobilization of oligonucleotides, peptides, proteins, antigens, antibodies, polysaccharides, and other biomolecules for sensor applications. The unusually large sizes of the interconnected pores allow large target molecules to pass rapidly into and through the gel and bind to immobilized biomolecules. An additional advantage of the sugar-containing hydrogels are their extremely low non-specific absorption of labeled target molecules, providing low background levels. State-of-the-art hydrogel materials do not have this type of homogeneous interconnected macroporosity, thus large target molecules cannot readily diffuse through them. In addition, they nearly always experience non-specific (background) absorption of labeled target molecules, limiting their usefulness in sensor applications. This invention provides a method for preparing a sugar polyacrylate hydrogel with functional chemical groups which covalently bond oligonucleotides and peptides. A method for copolymerizing acrylate-terminated oligonucleotides with sugar acrylate monomers and diacrylate cross-linking agents is also provided.
    • 我们描述了含糖水凝胶作为用于固定寡核苷酸,肽,蛋白质,抗原,抗体,多糖和其他用于传感器应用的生物分子的非常高度多孔的水性载体材料的新用途。 互连孔的异常大尺寸允许大的目标分子快速通过并穿过凝胶并结合固定的生物分子。 含糖水凝胶的另外的优点是它们非常低的标记靶分子的非特异性吸收,提供低的背景水平。 最先进的水凝胶材料不具有这种类型的均匀相互连接的大孔隙度,因此大的靶分子不能容易地通过它们扩散。 此外,它们几乎总是经历非特异性(背景)吸收标记的靶分子,限制了它们在传感器应用中的用途。 本发明提供了制备具有共价键合寡核苷酸和肽的功能化学基团的糖聚丙烯酸酯水凝胶的方法。 还提供了将丙烯酸酯封端的寡核苷酸与糖丙酯单体和二丙烯酸酯交联剂共聚的方法。
    • 2. 发明申请
    • Sugar-containing hydrogel for immobilization
    • 含糖水凝胶用于固定
    • US20060246499A1
    • 2006-11-02
    • US11444819
    • 2006-05-19
    • Mark SpectorDavid StengerCharles PattersonBrett MartinPaul Charles
    • Mark SpectorDavid StengerCharles PattersonBrett MartinPaul Charles
    • C12Q1/68C08G63/91C12M1/34
    • G01N33/548G01N33/54353
    • We describe the novel use of a sugar-containing hydrogels as very highly porous, aqueous support material for the immobilization of oligonucleotides, peptides, proteins, antigens, antibodies, polysaccharides, and other biomolecules for sensor applications. The unusually large sizes of the interconnected pores allow large target molecules to pass rapidly into and through the gel and bind to immobilized biomolecules. An additional advantage of the sugar-containing hydrogels are their extremely low non-specific absorption of labeled target molecules, providing low background levels. State-of-the-art hydrogel materials do not have this type of homogeneous interconnected macroporosity, thus large target molecules cannot readily diffuse through them. In addition, they nearly always experience non-specific (background) absorption of labeled target molecules, limiting their usefulness in sensor applications. This invention provides a method for preparing a sugar polyacrylate hydrogel with functional chemical groups which covalently bond oligonucleotides and peptides. A method for copolymerizing acrylate-terminated oligonucleotides with sugar acrylate monomers and diacrylate cross-linking agents is also provided.
    • 我们描述了含糖水凝胶作为用于固定寡核苷酸,肽,蛋白质,抗原,抗体,多糖和其他用于传感器应用的生物分子的非常高度多孔的水性载体材料的新用途。 互连孔的异常大尺寸允许大的目标分子快速通过并穿过凝胶并结合固定的生物分子。 含糖水凝胶的另外的优点是它们非常低的标记靶分子的非特异性吸收,提供低的背景水平。 最先进的水凝胶材料不具有这种类型的均匀相互连接的大孔隙度,因此大的靶分子不能容易地通过它们扩散。 此外,它们几乎总是经历非特异性(背景)吸收标记的靶分子,限制了它们在传感器应用中的用途。 本发明提供了制备具有共价键合寡核苷酸和肽的功能化学基团的糖聚丙烯酸酯水凝胶的方法。 还提供了将丙烯酸酯封端的寡核苷酸与糖丙酯单体和二丙烯酸酯交联剂共聚的方法。
    • 7. 发明申请
    • DESIGN AND SELECTION OF GENETIC TARGETS FOR SEQUENCE RESOLVED ORGANISM DETECTION AND IDENTIFICATION
    • 设计和选择用于序列​​分解的有机体检测和鉴定的遗传学目标
    • US20080033706A1
    • 2008-02-07
    • US11843126
    • 2007-08-22
    • Anthony MalanoskiZheng WangBaochuan LinDavid StengerJoel Schnur
    • Anthony MalanoskiZheng WangBaochuan LinDavid StengerJoel Schnur
    • G06G7/48C40B40/08C40B50/02
    • C40B40/08G06F19/20
    • A computer-implemented method as follows. Providing a list of target sequences associated with one or more organisms in a list of organisms. Providing a list of candidate prototype sequences suspected of hybridizing to one or more of the target sequences. Generating a collection of probes corresponding to each candidate prototype sequence, each collection of probes having a set of probes for every subsequence having a predetermined, fixed subsequence length of the corresponding candidate prototype sequence. The sets consist of the corresponding subsequence and every variation of the corresponding subsequence formed by varying a center nucleotide of the corresponding subsequence. Generating a set of fragments corresponding to each target sequence, each set of fragments having every fragment having a predetermined, fixed fragment length of the corresponding target sequence. Calculating the binding free energy of each fragment with a perfect complimentary sequence of the fragment. If any binding free energy is above a predetermined, fixed threshold, the fragment is extended one nucleotide at a time until the binding free energy is below the threshold or the fragment is the same length as the probe, generating a set of extended fragments. Determining which extended fragments are perfect matches to any of the probes. Assembling a base call sequence corresponding to each candidate prototype sequence. The base call sequence has a base call corresponding to the center nucleotide of each probe of the corresponding prototype sequence that is a perfect match to any extended fragment, but for which the other members of the set of probes containing the perfect match probe are not perfect matches to any extended fragment and a non-base call in all other circumstances.
    • 计算机实现的方法如下。 提供与生物体列表中的一种或多种生物相关的靶序列的列表。 提供疑似与一个或多个靶序列杂交的候选原型序列的列表。 产生与每个候选原型序列相对应的探针的集合,每个探针集合具有用于每个子序列的探针组,其具有相应候选原型序列的预定的固定子序列长度。 这些集由相应的子序列和通过改变相应子序列的中心核苷酸形成的相应子序列的每个变化组成。 产生对应于每个靶序列的一组片段,每组片段具有每个片段具有相应靶序列的预定的固定片段长度。 用片段的完美互补序列计算每个片段的结合自由能。 如果任何结合自由能高于预定的固定阈值,则片段一次延伸一个核苷酸,直到结合自由能低于阈值或片段与探针的长度相同,产生一组扩展片段。 确定哪些扩展片段与任何探针完美匹配。 组装对应于每个候选原型序列的基本调用序列。 基本调用序列具有对应于相应原型序列的每个探针的中心核苷酸的碱基调用,其与任何扩展片段完美匹配,但是包含完美匹配探针的探针组的其它成员对于其不是完美的 在任何其他情况下匹配任何扩展片段和非基本调用。